MATLAB基础应用精讲-【数模应用】相关分析(最终篇)(附MATLAB、python和R语言代码)

本文深入探讨相关性分析,包括R语言中的相关性、协方差、偏相关,MATLAB的题目解析以及Python的NumPy、SciPy和Pandas实现。介绍了线性相关性、等级相关性及其可视化方法,如带有回归线的XY图和相关矩阵的热图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

几个相关概念

代码实现

R语言

1. 相关性

2.协方差 

3.偏相关

向量与向量相关

多变量与多变量相关(cor)

多变量与多变量相关Hmisc::rcorr

多变量与多变量相关psych::corr.test

MATLAB

题1

题2

题3

python

相关性实现

NumPy 相关性计算

SciPy 相关性计算

Pandas 相关性计算

线性相关实现

线性回归:SciPy 实现

等级相关

排名:SciPy 实现

等级相关性:NumPy 和 SciPy 实现

等级相关性:Pandas 实现

相关性的可视化

带有回归线的 XY 图

相关矩阵的热图 matplotlib

相关矩阵的热图 seaborn


 

几个相关概念

  • 变量类型:在进行相关分析之前,首先要确定所研究的变量类型。这些变量可以是连续的(如身高、体重)或者离散的(如性别、婚姻状况)。
  • 相关系数:相关分析的核心是计算相关系数,这是一个度量值,表明两个变量之间的关系有多紧密。最常用的相关系数是皮尔逊相关系数(Pearson correlation coefficient),用于度量两个连续变量之间的线性关系。
  • 线性与非线性关系:皮尔逊相关系数主要用于评估线性关系。对于非线性关系,可能需要使用其他类型的相关系数,如斯皮尔曼等级相关系数(Spearman’s rank correlation coefficient)。
  • 方向:相关系数的值范围通常在-1到+1之间。一个正的相关系数意味着一个变量增加时,另一个变量也增加;负的相关系数则意味着一个变量增加时,另一个变量减少。
  • 统计显著性:仅仅计算出相关系数是不够的,还需要评估这种相关性是否具有统计显著性。通常,这通过进行假设检验(如t检验)来实现。
  • 因果关系:值得注意的是,即使两个变量之间存在强相关性,也不能自动推断出因果关系。相关性只能揭示变量之间的关联,而不是因果。

  • 典型相关分析:计算两组变量(表示为 X 组和 Y 组)的典型变量,这些典型变量是通过线性组合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值