Please configure Android SDK

本文介绍如何在file-projectstructure-project中选择适合的SDK,确保项目能够顺利运行。正确的SDK选择对于项目开发至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

file-project structure-project,在project SDK里面选择n你的SDK

通过下面的文字描述,能否输出关键组件之间的组成关系,并用图形的方式进行输出 在医疗领域,RAG主要用于辅助诊断、药物信息查询和个性化治疗建议,帮助医生快速获取循证医学知识。 1)应用案例: 诊断支持系统:例如,为医生提供实时诊断建议。系统检索患者病历、医学文献(如PubMed数据库)和临床指南,生成针对特定症状的潜在病因分析。一个典型实例是Mayo Clinic开发的AI助手,用于癌症早期筛查1。 2)实现方案: 方案概述:采用多阶段流程:(1) 用户输入查询(如症状描述);(2) 检索器从电子健康记录(EHR)、医学期刊和知识图谱中检索相关片段;(3) 生成器整合检索结果,输出结构化报告。 3)关键组件:检索器使用向量数据库(如FAISS或Pinecone)存储嵌入向量;生成器基于大模型;知识源包括标准化医学数据库(如SNOMED CT)。 4)部署方式:通常通过Web应用或API集成到医院信息系统(HIS),确保数据隐私合规(如符合HIPAA标准)。 5)使用的大模型: 主要基于GPT-4或Med-PaLM(Google的医疗专用模型),这些模型在医疗文本理解上表现优异,支持多语言生成1。 其他模型:BioBERT(针对生物医学文本微调的BERT变体),用于处理专业术语。 6)智能体框架LangChain:常用框架,支持构建检索链(如使用VectorStoreRetriever)和生成代理,便于集成医学知识库。 LlamaIndex:优化医疗数据索引,实现高效检索,常用于临床试验数据分析项目。
07-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值