基于Flink+kafka实时告警

文章介绍了当前项目中告警系统存在的高延时问题,通过保存到本地数据库和定时任务进行判断的方式导致最高可达10分钟的误差。为解决此问题,作者构建了一个简单的Demo,利用Flink和Kafka来处理学生成绩的实时数据,当学生的数学或物理成绩超出预设范围时立即触发告警。在Windows环境下,文章详细列出了配置Zookeeper、Kafka以及编写Flink程序的步骤,展示了如何实现实时告警,从而降低延迟。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引出问题

项目使用告警系统的逻辑是将实时数据保存到本地数据库再使用定时任务做判断,然后产生告警数据。这种方式存在告警的延时实在是太高了。数据从产生到保存,从保存到判断都会存在时间差,按照保存数据定时5分钟一次,定时任务5分钟一次。最高会产生10分钟的误差,这种告警就没什么意义了。

demo设计

为了简单的还原业务场景,做了简单的demo假设

实现一个对于学生成绩评价的实时处理程序
数学成绩,基准范围是90-140,超出告警
物理成绩,基准范围是60-95,超出告警

环境搭建

使用windows环境演示

准备工作

1、安装jdk

2、安装zookeeper

解压压缩包

zoo_sample.cfg将它重命名为zoo.cfg

修改配置 dataDir=D://tools//apache-zookeeper-3.5.10-bin//data

配置环境变量

3、安装kafka

解压压缩包

修改config/server.properties

log.dirs=D://tools//kafka_2.11-2.1.0//log

flink程序代码

pom

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-java</artifactId>
    <version>1.13.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-streaming-java_2.12</artifactId>
    <version>1.13.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-clients_2.12</artifactId>
    <version>1.13.0</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.12</artifactId>
    <version>1.13.0</version>
</dependency>

<!-- https://mvnrepository.com/artifact/org.projectlombok/lombok -->
<dependency>
    <groupId>org.projectlombok</groupId>
    <artifactId>lombok</artifactId>
    <version>1.18.12</version>
    <scope>provided</scope>
</dependency>

<!-- https://mvnrepository.com/artifact/com.alibaba/fastjson -->
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>fastjson</artifactId>
    <version>1.2.62</version>
</dependency>
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka_2.11</artifactId>
    <version>1.10.0</version>
</dependency>

主程序

public class StreamAlertDemo {

	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment().setParallelism(3);
		Properties properties = new Properties();
		properties.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
		FlinkKafkaConsumer<String> kafkaConsumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);
		DataStreamSource<String> inputDataStream = env.addSource(kafkaConsumer);

		DataStream<String> resultStream = inputDataStream.flatMap(new AlertFlatMapper());
		resultStream.print().setParallelism(4);

		resultStream.addSink(new FlinkKafkaProducer<>("demo",new SimpleStringSchema(),properties));
		env.execute();
	}

}
主程序,配置告警规则后期可以使用推送或者拉去方式获取数据
public class RuleMap {

	private RuleMap(){}

	public final static Map<String,List<AlertRule>> initialRuleMap;

	private static List<AlertRule> ruleList = new ArrayList<>();

	private static List<String> ruleStringList = new ArrayList<>(Arrays.asList(
			"{\"target\":\"MathVal\",\"type\":\"0\",\"criticalVal\":90,\"descInfo\":\"You Math score is too low\"}",
			"{\"target\":\"MathVal\",\"type\":\"2\",\"criticalVal\":140,\"descInfo\":\"You Math score is too high\"}",
			"{\"target\":\"PhysicsVal\",\"type\":\"0\",\"criticalVal\":60,\"descInfo\":\"You Physics score is too low\"}",
			"{\"target\":\"PhysicsVal\",\"type\":\"2\",\"criticalVal\":95,\"descInfo\":\"You Physics score is too high\"}"));

	static {
		for (String i : ruleStringList) {
			ruleList.add(JSON.parseObject(i, AlertRule.class));
		}
		initialRuleMap = ruleList.stream().collect(Collectors.groupingBy(AlertRule::getTarget));
	}


}

AlertFlatMapper,处理告警逻辑

public class AlertFlatMapper implements FlatMapFunction<String, String> {

	@Override
	public void flatMap(String inVal, Collector<String> out) throws Exception {
		Achievement user = JSON.parseObject(inVal, Achievement.class);
		Map<String, List<AlertRule>> initialRuleMap = RuleMap.initialRuleMap;
		List<AlertInfo> resList = new ArrayList<>();
		List<AlertRule> mathRule = initialRuleMap.get("MathVal");
		for (AlertRule rule : mathRule) {
			if (checkVal(user.getMathVal(), rule.getCriticalVal(), rule.getType())) {
				resList.add(new AlertInfo(user.getName(), rule.getDescInfo()));
			}
		}
		List<AlertRule> physicsRule = initialRuleMap.get("PhysicsVal");
		for (AlertRule rule : physicsRule) {
			if (checkVal(user.getPhysicsVal(), rule.getCriticalVal(), rule.getType())) {
				resList.add(new AlertInfo(user.getName(), rule.getDescInfo()));
			}
		}
		String result = JSON.toJSONString(resList);
		out.collect(result);
	}

	private static boolean checkVal(Integer actVal, Integer targetVal, Integer type) {
		switch (type) {
			case 0:
				return actVal < targetVal;
			case 1:
				return actVal.equals(targetVal);
			case 2:
				return actVal > targetVal;
			default:
				return false;
		}
	}
}

三个实体类

@Data
@EqualsAndHashCode(callSuper = false)
@Accessors(chain = true)
public class Achievement implements Serializable {

    private static final long serialVersionUID = -1L;

    private String name;

    private Integer mathVal;

    private Integer physicsVal;

}

@Data
@AllArgsConstructor
@EqualsAndHashCode(callSuper = false)
@Accessors(chain = true)
public class AlertInfo implements Serializable {
    
    private static final long serialVersionUID = -1L;

    private String name;

    private String descInfo;

}

@Data
@AllArgsConstructor
@EqualsAndHashCode(callSuper = false)
@Accessors(chain = true)
public class AlertRule implements Serializable {

	private static final long serialVersionUID = -1L;

	private String target;

	//0小于 1等于 2大于
	private Integer type;

	private Integer criticalVal;

	private String descInfo;
}

 项目演示

创建kafka生产者 test
.\bin\windows\kafka-console-producer.bat --broker-list localhost:9092 --topic test

创建kafka消费者 demo
.\bin\windows\kafka-console-consumer.bat --bootstrap-server localhost:9092 --topic demo --from-beginning

启动flink应用

给topic test发送消息

{"name":"liu","MathVal":45,"PhysicsVal":76}

 消费topic demo

告警系统架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值