[论文阅读] 2019 NeurIPS - Generative modeling by estimating gradients of the data distribution

本文介绍了一种创新的生成式模型方法,通过估计数据分布的梯度而非直接建模概率密度函数来实现。这种方法避免了传统生成模型中的归一化难题,并提出了slicedscorematching技术以提高效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

📑[阅读笔记]Generative modeling by estimating gradients of the data distribution

本文创造性的使用积分函数来学习训练数据的分布,并提出sliced score matching解决了传统score matching中存在的性能问题。

🙋‍♂️张同学 📧zhangruiyuan@zju.edu.cn 有问题请联系我~

⚽️一、生成式模型应用

  • 🚗已经大量应用,比如人脸生成模型中,生成的人脸已经和真实的人脸相差无几。

  • 🚕自然语言处理,一个语言模型本质上就是一个基于语言的生成式模型。

🏀二、生成式模型介绍

  • 🚗一般的生成模型

    • 🚜从一个数据集中来训练,这个数据集中有很多数据样本

    • 🚛生成模型是一个概率分布的集合

    • 🚚给定一个训练集,我们的目的是找到一个最佳的分布的模型

    • 🚐得到这个模型之后,我们可以进行源源不断的采样来获得一个新样本

      image-20211215185453459

🏈三、生成模型的分类

生成式模型是一种对数据分布的表示,根据不同的表示,可以有以下生成式模型的分类:

  • 🚗隐式的生成式模型:GUN

    生成一个随机噪声,将这个噪声通过一个神经网络映射到一个样本上,比如可以是一张图片。

    image-20211215194815932
    • 🚜从噪声生成样本的过程就是一个从分布中进行采样的过程
    • 🚛优点
      • 灵活的结构
      • 比较高质量的样本质量
    • 🚚缺点
      • 很难训练一个模型:对抗训练难以调整、也不是很稳定
      • 没法去计算似然函数,所以没法比较不同隐式模型的好坏
  • 🚕显式的生成式模型

    通过直接表示这个分布的概率密度函数来表示分布:显示分布

    image-20211215195617731

    贝叶斯模型、等

    • 🚜优点
      • 可以用似然函数大小来比较不同模型好坏 # 这个似然函数是个什么概念?
    • 🚛缺点
      • 需要模型本身是归一化的 # 模型本身的归一化指的是什么?
      • 模型在训练的时候需要很快的计算似然函数,这个同时也制约了模型的表示能力。

⚾️四、本文主要工作

🍏本文提出一种全新的分布表示方法:

这个和显式的分布有什么区别?

模型要使用概率密度的导数进行表示
KaTeX parse error: Undefined control sequence: \grad at position 2: \̲g̲r̲a̲d̲_xlog(p(x)) =>…
image-20211215200649614

颜色表示概率密度函数,用向量场来表示积分函数。

结论 => 概率密度函数和积分函数,可以在可微的情况下表示同一种分布。 # 可微是为啥?

🍎为啥要使用积分函数:

作者认为

  • 概率密度函数表示的程度较低、没有积分函数灵活;
  • 使用积分函数就不需要计算归一化函数了
image-20211215201216456

通过训练一个积分函数的模型,

训练的损失函数是要求我们的向量场和数据分布的向量场一样

所以就需要计算两个向量场之间的距离 fisher divergence(这个距离不容易直接计算?依赖未知的积分函数对应的分布??听不懂)

=> score matching不依赖于未知的积分函数的分布,但是这个不容易计算(尤其是在神经网络的模型中)

!= 但是不能用于大规模维度的计算

image-20211215201726722

🍐如何解决score matching算法低效的问题

sliced score matching: 将高维的向量场变成一个低维的标量场。

提出目标函数:sliced fisher divergence

=> 作者的工作实现了只进行一次反向即可完成训练。

image-20211215204715690

sliced score matching的实验结果极其迅速!且效果相当。

image-20211220100404042

效果相似

image-20211215205241863

🎾五、生成模型实验及展示效果

使用积分函数构建模型来构建新样本

image-20211215205329229

从积分函数中生成样本

image-20211215205536790

在数据较多的地方积分场比较好,在数据量比较少的地方积分场比较差:

image-20211215205759740

可以通过在原始数据中添加随机数来进行扰动
为什么要添加噪声呢?
添加噪声之后可以方便score matching计算,可以填补数据量少的地方。
所以最终的结果是使用多级噪声的原始数据进行训练。
采样时采用的是拉直满采样。

image-20211215205851731

展示效果

image-20211215211224364

🏐参考文献

  • 原文献:Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution[J]. arXiv preprint arXiv:1907.05600, 2019.

  • 原作者的分享视频:https://www.techbeat.net/talk-info?id=509

  • GitHub源代码:https://github.com/ermongroup/ncsn?utm_source=catalyzex.com

### 关于DDPM(去噪扩散概率模型)的学术论文 去噪扩散概率模型(Denoising Diffusion Probabilistic Models, DDPMs)是一类强大的生成模型,其核心思想在于通过一系列逐步加噪声的过程将数据分布映射到高斯白噪声上,在此过程中学习反向过程以便能够从纯噪声中重建原始数据[^1]。 对于寻找有关DDPM的具体学术资源而言,可以关注以下几篇具有代表性的研究文章: - Ho et al., 2020年发布的《Denoising Diffusion Probabilistic Models》深入探讨了该方法论的技术细节及其性能表现。这篇论文不仅介绍了理论框架还提供了实现技巧以及实验验证。 - Song 和 Ermon 的工作则进一步探索了分数匹配与时间重加权技术如何改进传统DDPM架构下的样本质量并加速训练效率;这方面的成果体现在他们合著的一系列论文当中,例如《Generative Modeling by Estimating Gradients of the Data Distribution》等。 此外,《Diffusion Models: 方法和应用的综合调查》也提供了一个全面视角来理解不同类型的扩散模型,包括但不限于DDPM的基础概念和发展趋势等内容[^2]。 为了获取最前沿的研究进展,建议定期查阅顶级会议如ICML、NeurIPS等相关领域内的最新发布情况,并利用Google Scholar或其他专业数据库进行更精确的主题检索。 ```python import arxiv search = arxiv.Search( query="denoising diffusion probabilistic models", max_results=5, ) for result in search.results(): print(result.title) ``` 上述Python脚本可以帮助快速找到最近几年内关于DDPM主题的一些高质量预印本资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值