贪心算法--背包问题、均分纸牌、货币选择、区间调度、最小字典序

贪心算法

一、基本概念:

所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
所以对所采用的贪心策略一定要仔细分析其是否满足无后效性。

二、贪心算法的基本思路:

1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每一子问题求解,得到子问题的局部最优解。
4.把子问题的解局部最优解合成原来解问题的一个解。

三、贪心算法适用的问题

贪心策略适用的前提是:局部最优策略能导致产生全局最优解。
实际上,贪心算法适用的情况很少。一般,对一个问题分析是否适用于贪心算法,可以先选择该问题下的几个实际数据进行分析,就可做出判断。

四、贪心算法的实现框架

从问题的某一初始解出发;
while (能朝给定总目标前进一步)
{ 
      利用可行的决策,求出可行解的一个解元素;
}
由所有解元素组合成问题的一个可行解;

五、贪心策略的选择

因为用贪心算法只能通过解局部最优解的策略来达到全局最优解,因此,一定要注意判断问题是否适合采用贪心算法策略,找到的解是否一定是问题的最优解。

六、例题分析

6.1 背包问题

下面是一个可以试用贪心算法解的题目,贪心解的确不错,可惜不是最优解。

有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品装入是否能得到最优解?
(3)每次选取单位重量价值最大的物品,成为解本题的策略。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。比如,求最小生成树的Prim算法和Kruskal算法都是漂亮的贪心算法。
贪心算法还是很常见的算法之一,这是由于它简单易行,构造贪心策略不是很困难。可惜的是,它需要证明后才能真正运用到题目的算法中。
一般来说,贪心算法的证明围绕着:整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于例题中的3种贪心策略,都是无法成立(无法被证明)的,解释如下:
(1)贪心策略:选取价值最大者。反例:
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
W=30
物品:A B C
重量:28 12 12
价值:50 20 20
(3)贪心策略:选取单位重量价值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。

6.2 均分纸牌问题

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。

移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4 堆纸牌数分别为:

① 9 ② 8 ③ 17 ④ 6

移动3次可达到目的:

从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
  
算法分析:设a[i]为第I堆纸牌的张数(0<=I<=n),v为均分后每堆纸牌的张数,s为最小移动次数。

我们用贪心算法,按照从左到右的顺序移动纸牌。如第I堆的纸牌数不等于平均值,则移动一次(即s加1),分两种情况移动:

1.若a[i]>v,则将a[i]-v张从第I堆移动到第I+1堆;

2.若a[i]<v,则将v-a[i]张从第I+1堆移动到第I堆。

为了设计的方便,我们把这两种情况统一看作是将a[i]-v从第I堆移动到第I+1堆,移动后有a[i]=v; a[I+1]=a[I+1]+a[i]-v.

在从第I+1堆取出纸牌补充第I堆的过程中可能回出现第I+1堆的纸牌小于零的情况。

例如:
n=3,三堆指派数为1 2 27 ,这时v=10,为了使第一堆为10,要从第二堆移9张到第一堆,而第二堆只有2张可以移,这是不是意味着刚才使用贪心法是错误的呢?
我们继续按规则分析移牌过程,从第二堆移出9张到第一堆后,第一堆有10张,第二堆剩下-7张,在从第三堆移动17张到第二堆,刚好三堆纸牌都是10,最后结果是对的,我们在移动过程中,只是改变了移动的顺序,而移动次数不便,因此此题使用贪心法可行的。

#include <iostream>
using namespace std;

int main() {
   
   
	int c[500];
	int n, sum = 0;
	cin >> n;
	for (int i = 0; i < n; i++) {
   
   
		cin >> c[i];
		sum += c[i];
	}
	int avg = sum / n;
	int count = 0;
	for (int i = 0
问题描述: 假设有一个能装入总体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品的总重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品选择方案。假设前面已有了多种选择的方案,并保留了其中总价值最大的方案于数组option[]中,该方案的总价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品选择是可能的话,本方案所能达到的总价值的期望值设为tv。引入tv是当一旦当前方案的总价值的期望值也小于前面方案的总价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案总重量的限制才是可行的。选中之后继续递归去考虑其余物品选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值