基于XGBoost的异烟酸生产收率预测:冠军解决方案解析

1. 引言

在化工生产领域,准确预测产品收率对优化工艺流程、降低生产成本具有重要意义。本文以异烟酸生产为研究对象,通过机器学习方法构建预测模型,在包含10个生产步骤、42个工艺参数的数据集上实现高精度收率预测。该方案在工业竞赛中斩获冠军,本文将深度解析其技术实现细节。

2. 数据特性与挑战

2.1 数据构成

  • 样本量:训练集3000+条,测试集A/B各1000+条

  • 特征维度:42个工艺参数(A1-A28,B1-B14)

  • 数据特点:包含数值型、时间型、分类型变量,存在多阶段生产过程记录

2.2 核心挑战

  • 时间特征格式复杂:包含21:00-23:30等跨时段记录

  • 异常数据混杂:存在1900/1/21 0:00等明显错误时间戳

  • 特征交互复杂:需捕捉温度变化、时间间隔等动态过程

3. 数据预处理策略

3.1 异常值修正

通过领域知识判断异常模式,典型修正包括:

# 时间格式修正示例
df_trn['A5'] = df_trn['A5'].replace('1900/1/21 0:00', '21:00:00') 

# 数值异常修正
df_trn.loc[(df_trn['A1']==200)&(df_trn['A3']==405), 'A1'] = 300

3.2 缺失值处理

  • 关键特征填充领域默认值:df_trn['A3'] = df_trn['A3'].fillna(405)

  • 非关键特征保留空值,由模型自动处理缺失模式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值