Hadoop-HA高可用

本文详细介绍了Hadoop HA(高可用)配置的过程,包括HDFS和YARN的HA工作机制、配置步骤及验证方法。深入解析了如何通过双NameNode和JournalNode消除单点故障,以及如何配置Zookeeper实现自动故障转移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:HA概述 

1:所谓HA(High Available),即高可用(7*24小时不中断服务)。

2:实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。

3:Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。

4:NameNode主要在以下两个方面影响HDFS集群

       NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启

       NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用。

       HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器。

二:HDFS-HA工作机制

通过双NameNode消除单点故障

1:HDFS-HA工作要点

1.1:元数据管理方式需要改变

内存中各自保存一份元数据;

Edits日志只有Active状态的NameNode节点可以做写操作;

两个NameNode都可以读取Edits;

共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现);

1.2:需要一个状态管理功能模块

       实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生。

1.3:必须保证两个NameNode之间能够ssh无密码登录

1.4:隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务

2:HDFS-HA自动故障转移工作机制

       前面学习了使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode,下面学习如何配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,如图3-20所示。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:

(1):故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。

(2):现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。

       ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:

(1):健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。

(2):ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。

(3):基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。

三:HDFS-HA集群配置

1:环境准备

https://blog.csdn.net/qq_36297434/article/details/87472245

2:规划集群

hadoop02 

hadoop03 

hadoop04

NameNode    

NameNode

 

JournalNode  

JournalNode  

JournalNode  

DataNode

DataNode

DataNode

ZK  

ZK  

ZK  

 

ResourceManager

 

NodeManager

NodeManager

NodeManager

3:配置Zookeeper集群

3.1:集群规划

在hadoop02、hadoop03和hadoop04三个节点上部署Zookeeper。

3.2:解压安装

3.2.1:解压Zookeeper安装包到/opt/module/目录下

tar -zxvf zookeeper-3.4.10.tar.gz -C /opt/module/

3.2.2:在/opt/module/zookeeper-3.4.10/这个目录下创建zkData

mkdir -p zkData

3.2.3:重命名/opt/module/zookeeper-3.4.10/conf这个目录下的zoo_sample.cfg为zoo.cfg

mv zoo_sample.cfg zoo.cfg

3.3:配置zoo.cfg文件

3.3.1:具体配置

dataDir=/opt/module/zookeeper-3.4.10/zkData

增加如下配置

#######################cluster##########################
server.2=hadoop02:2888:3888
server.3=hadoop03:2888:3888
server.4=hadoop04:2888:3888

3.3.2:配置参数解读

Server.A=B:C:D

A是一个数字,表示这个是第几号服务器;

B是这个服务器的IP地址;

C是这个服务器与集群中的Leader服务器交换信息的端口;

D是万一集群中的Leader服务器挂了,需要一个端口来重新进行选举,选出一个新的Leader,而这个端口就是用来执行选举时服务器相互通信的端口。

集群模式下配置一个文件myid,这个文件在dataDir目录下,这个文件里面有一个数据就是A的值,Zookeeper启动时读取此文件,拿到里面的数据与zoo.cfg里面的配置信息比较从而判断到底是哪个server

3.4:集群操作

3.4.1:在/opt/module/zookeeper-3.4.10/zkData目录下创建一个myid的文件

touch myid

3.4.2:编辑myid文件

vi myid  
#在文件中添加与server对应的编号:如2

3.4.3:拷贝配置好的zookeeper到其他机器上

scp -r zookeeper-3.4.10/ root@hadoop03:/opt/module/
scp -r zookeeper-3.4.10/ root@hadoop04:/opt/module/

并分别修改myid文件中内容为3、4

3.4.4:分别启动zookeeper

bin/zkServer.sh start
bin/zkServer.sh start
bin/zkServer.sh start

3.4.5:查看各个节点的ZooKeeper状态

bin/zkServer.sh status

4:配置HDFS-HA集群

4.1:官方地址

http://hadoop.apache.org/

4.2:在opt目录下创建一个ha文件夹

mkdir ha

4.3:将/opt/app/下的 hadoop-2.7.2拷贝到/opt/ha目录下

cp -r hadoop-2.7.2/ /opt/ha/

4.4:配置hadoop-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_144

4.5:配置core-site.xml

<configuration>
<!-- 把两个NameNode)的地址组装成一个集群mycluster -->
		<property>
			<name>fs.defaultFS</name>
        	<value>hdfs://mycluster</value>
		</property>

		<!-- 指定hadoop运行时产生文件的存储目录 -->
		<property>
			<name>hadoop.tmp.dir</name>
			<value>/opt/ha/hadoop-2.7.2/data/tmp</value>
		</property>
</configuration>

4.6:配置hdfs-site.xml

<configuration>
	<!-- 完全分布式集群名称 -->
	<property>
		<name>dfs.nameservices</name>
		<value>mycluster</value>
	</property>

	<!-- 集群中NameNode节点都有哪些 -->
	<property>
		<name>dfs.ha.namenodes.mycluster</name>
		<value>nn1,nn2</value>
	</property>

	<!-- nn1的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn1</name>
		<value>hadoop02:9000</value>
	</property>

	<!-- nn2的RPC通信地址 -->
	<property>
		<name>dfs.namenode.rpc-address.mycluster.nn2</name>
		<value>hadoop03:9000</value>
	</property>

	<!-- nn1的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn1</name>
		<value>hadoop02:50070</value>
	</property>

	<!-- nn2的http通信地址 -->
	<property>
		<name>dfs.namenode.http-address.mycluster.nn2</name>
		<value>hadoop03:50070</value>
	</property>

	<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
	<property>
		<name>dfs.namenode.shared.edits.dir</name>
	<value>qjournal://hadoop02:8485;hadoop03:8485;hadoop04:8485/mycluster</value>
	</property>

	<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
	<property>
		<name>dfs.ha.fencing.methods</name>
		<value>sshfence</value>
	</property>

	<!-- 使用隔离机制时需要ssh无秘钥登录-->
	<property>
		<name>dfs.ha.fencing.ssh.private-key-files</name>
		<value>/home/atguigu/.ssh/id_rsa</value>
	</property>

	<!-- 声明journalnode服务器存储目录-->
	<property>
		<name>dfs.journalnode.edits.dir</name>
		<value>/opt/ha/hadoop-2.7.2/data/jn</value>
	</property>

	<!-- 关闭权限检查-->
	<property>
		<name>dfs.permissions.enable</name>
		<value>false</value>
	</property>

	<!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
	<property>
  		<name>dfs.client.failover.proxy.provider.mycluster</name>
	<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
	</property>
</configuration>

4.7:拷贝配置好的hadoop环境到其他节点

scp -r hadoop-2.7.2/ root@hadoop03: /opt/ha/
scp -r hadoop-2.7.2/ root@hadoop04: /opt/ha/

5:启动HDFS-HA集群

5.1:在各个JournalNode节点上,输入以下命令启动journalnode服务

sbin/hadoop-daemon.sh start journalnode

5.2:在[nn1]上,对其进行格式化,并启动

bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

5.3:在[nn2]上,同步nn1的元数据信息

bin/hdfs namenode -bootstrapStandby

5.4:启动[nn2]

sbin/hadoop-daemon.sh start namenode

5.5:浏览器访问

hadoop02:50070
hadoop03:50070

5.6:在[nn1]上,启动所有datanode

sbin/hadoop-daemons.sh start datanode

5.7:将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

5.8:查看是否Active

bin/hdfs haadmin -getServiceState nn1

6:配置HDFS-HA自动故障转移

6.1:具体配置

6.1.1:在hdfs-site.xml中增加

<property>
	<name>dfs.ha.automatic-failover.enabled</name>
	<value>true</value>
</property>

6.1.2:core-site.xml

<property>
	<name>ha.zookeeper.quorum</name>
	<value>hadoop02:2181,hadoop03:2181,hadoop04:2181</value>
</property>

6.1.3:同步配置到其他节点

6.2:启动

6.2.1:关闭所有HDFS服务

stop-dfs.sh

6.2.2:启动Zookeeper集群

bin/zkServer.sh start

6.2.3:初始化HA在Zookeeper中状态

bin/hdfs zkfc -formatZK

6.2.4:启动HDFS服务

sbin/start-dfs.sh

6.3:验证

6.3.1:将Active NameNode进程kill

kill -9 namenode的进程id

6.3.2:将Active NameNode机器断开网络

service network stop

四:YARN-HA配置

1:YARN-HA工作机制

1.1:官方文档

http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

1.2:YARN-HA工作机制,如图所示

2:配置YARN-HA集群

2.1:环境准备

接上

2.2:规划集群

hadoop02

hadoop03 

hadoop04

NameNode    

NameNode

 

JournalNode  

JournalNode  

JournalNode  

DataNode

DataNode

DataNode

ZK

ZK

ZK

ResourceManager  

ResourceManager  

 

NodeManager

NodeManager

NodeManager

3.3:具体配置

3.3.1:yarn-site.xml

<configuration>

    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <!--启用resourcemanager ha-->
    <property>
        <name>yarn.resourcemanager.ha.enabled</name>
        <value>true</value>
    </property>
 
    <!--声明两台resourcemanager的地址-->
    <property>
        <name>yarn.resourcemanager.cluster-id</name>
        <value>cluster-yarn1</value>
    </property>

    <property>
        <name>yarn.resourcemanager.ha.rm-ids</name>
        <value>rm1,rm2</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm1</name>
        <value>hadoop02</value>
    </property>

    <property>
        <name>yarn.resourcemanager.hostname.rm2</name>
        <value>hadoop03</value>
    </property>
 
    <!--指定zookeeper集群的地址--> 
    <property>
        <name>yarn.resourcemanager.zk-address</name>
        <value>hadoop02:2181,hadoop03:2181,hadoop04:2181</value>
    </property>

    <!--启用自动恢复--> 
    <property>
        <name>yarn.resourcemanager.recovery.enabled</name>
        <value>true</value>
    </property>
 
    <!--指定resourcemanager的状态信息存储在zookeeper集群--> 
    <property>
        <name>yarn.resourcemanager.store.class</name>     <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>

</configuration>

3.3.2:同步配置到其他节点

3.4:启动hdfs

3.4.1:在各个JournalNode节点上,输入以下命令启动journalnode服务

sbin/hadoop-daemon.sh start journalnode

3.4.2:在[nn1]上,对其进行格式化,并启动

bin/hdfs namenode -format
sbin/hadoop-daemon.sh start namenode

3.4.3:在[nn2]上,同步nn1的元数据信息

bin/hdfs namenode -bootstrapStandby

3.4.4:启动[nn2]

sbin/hadoop-daemon.sh start namenode

3.4.5:在[nn1]上,启动所有DataNode

sbin/hadoop-daemons.sh start datanode

3.4.6:将[nn1]切换为Active

bin/hdfs haadmin -transitionToActive nn1

3.5:启动YARN

3.5.1:在hadoop02中执行:

sbin/start-yarn.sh

3.5.2:在hadoop03中执行:

sbin/yarn-daemon.sh start resourcemanager

3.5.3:查看服务状态,如图3-24所示

bin/yarn rmadmin -getServiceState rm1

3.5.4:浏览器访问

hadoop02:8088

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值