Python基本概念与实践

Python语言,总给我一种“嗯?还能这么玩儿?”的感觉

Python像一个二三十岁的年轻人,自由、年轻、又灵活

欢迎一起进入Python的世界~

本人工作中经常使用Python,针对一些常用的语法概念进行持续记录。

目录

一、Python开发环境

1. venv

2. conda

二、类与常见数据结构

1. Python库、模块、类

1) Python库

2) Python模块

 3) Python类

2. Python基本数据结构

1) 列表(List)

2) 元组(Tuple)

3) 字典(Dictionary)

4) 集合(Set)

三、Python进行HTTP请求

1. 示例代码

2. JSON数据处理

1) json.dumps转为json串

2) json.loads转为字典

四、Python文件处理

1. 文件目录:os模块

2. 读取与写入:open函数

3. 处理Excel:openpyxl库


一、Python开发环境

Python环境管理工具主要是用于创建、管理、隔离不同的开发环境,以避免依赖冲突和确保项目的可移植性。以下是一些工作时设计过的环境管理工具。

1. venv

venv(Python虚拟环境)用于创建独立的Python运行环境。每个虚拟环境可以安装独立的Python包,而不会影响全局的Python环境。比较适合简单的Python项目。

  • 只管理Python包,依赖 pip 进行包安装
  • 创建独立的Python环境,隔离项目依赖
  • 依赖requirements.txt文件管理依赖
  • 创建环境和安装包的速度较快
  • 内置在Python中,无需额外安装

使用

# 创建虚拟环境,创建文件夹myenv进行存储
python -m venv myenv

# 激活虚拟环境myenv
# Windows系统
myenv\Scripts\activate

# macOS/Linux系统
source myenv/bin/activate

# 安装依赖
pip install requests

# 退出虚拟环境
deactivate

安装时可以使用国内镜像源提升下载速度,例如:

# 临时使用国内源
pip install package_name -i https://pypi.tuna.tsinghua.edu.cn/simple

常用国内镜像源:

  • 清华大学https://pypi.tuna.tsinghua.edu.cn/simple
  • 阿里云https://mirrors.aliyun.com/pypi/simple
  • 中科大https://pypi.mirrors.ustc.edu.cn/simple
  • 豆瓣https://pypi.douban.com/simple

永久配置镜像源(推荐):

1. 激活虚拟环境:

# Linux/macOS
source myvenv/bin/activate
# Windows
venv\Scripts\activate

2. 创建或修改pip.conf文件:

  • Linux/macOS:
mkdir -p ~/.pip
echo "[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn" > ~/.pip/pip.conf
  • Windows
    • 打开资源管理器,输入路径 %APPDATA% 进入用户配置目录。
    • 在 %APPDATA% 下创建 pip 文件夹(若不存在)。
    • 在 pip 文件夹中创建 pip.ini 文件,内容如下:
[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
trusted-host = pypi.tuna.tsinghua.edu.cn

验证配置生效:

pip config list
# 输出应包含:
# global.index-url='https://pypi.tuna.tsinghua.edu.cn/simple'

若多个镜像源不稳定,可配置多个备用源。修改 pip.conf 文件:

[global]
index-url = https://pypi.tuna.tsinghua.edu.cn/simple
extra-index-url = 
    https://mirrors.aliyun.com/pypi/simple
    https://pypi.douban.com/simple
trusted-host = 
    pypi.tuna.tsinghua.edu.cn
    mirrors.aliyun.com
    pypi.douban.com

使用以下语句能够导出所有库及其版本:

pip freeze > requirements.txt

通过上述配置,虚拟环境中的 pip 会优先从国内镜像源下载依赖,大幅提升安装效率。

2. conda

不仅可以管理Python包,还可以管理其他语言的包(如R、C++等)。除了创建独立的Python环境外,还可以安装和管理各种科学计算相关的包。适合复杂的科学计算和数据分析项目、尤其是多语言和库的场景。

使用

# 创建conda环境
conda create -n myenv python=3.9

# 激活conda环境
conda activate myenv

# 安装依赖
conda install numpy pandas

# 退出conda环境
conda deactivate

二、类与常见数据结构

1. Python库、模块、类

Python库是一个集合,包含多个模块。模块是单个文件,包含函数、类和变量等。类是模块中的一个组件,用于定义对象的结构和行为。简而言之,库由模块组成,模块由类和其他代码组成。

1) Python库

  • Python库是一组模块的集合,通常是为了实现特定的功能或解决特定的问题而组织在一起的。库可以是一个包(Package),包是一种特殊的模块,可以包含多个子模块和子包。
  • 库用于提供一组相关的功能,这些功能通常比单个模块更复杂、更全面。库可以是第三方库,也可以是Python标准库的一部分。

2) Python模块

在了解Python类与基本数据结构之前,需要了解Python类到底在该语言中处于怎样的位置,即Python类与具体的Python文件之间是什么关系。

Python文件和类的关系:Python文件和类的关系可以类比为容器和内容物的关系。一个Python文件可以包含一个或多个类的定义,也可以包含其他代码,如函数、变量等。

  • 一个Python文件称为一个模块。模块是Python代码的基本组织单位。(模块的名称通常与文件名相同。例如,文件 my_module.py 定义了一个模块 my_module 
  • 在模块中可以定义类:这些类可以相互独立,也可以相互关联。
  • 导入模块和类:可以使用import导入整个模块,然后通过模块名访问其中的类、函数和变量。同样,也可以使用 from ... import ... 语句直接导入模块中的指定类。

 3) Python类

使用class关键词来定义一个类:

class MyClass:
    # 类的属性
    attribute1 = "value1"
    attribute2 = "value2"

    # 类的方法
    def my_method(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值