Rerank模型哪款最强?详解如何轻松集成到你的项目中!

昨天的文章中我们提到,可以使用Rerank对RAG系统进行优化。揭开RAG重排序(Rerankers)和两阶段检索(Two-Stage Retrieval)的神秘面纱

今天,我们动手在项目中实现Rerank。

Rerank的目的是通过重新排序检索结果,提升文档与查询的相关性。其优势在于能够进一步提高检索准确性,确保最相关的文档排在前列,从而显著提升系统的整体性能和用户体验,如下图所示。

图片

因为在搜索的时候存在随机性,就是我们在RAG中第一次召回的结果往往不太满意的原因。但是这也没办法,如果你的索引有数百万甚至千万的级别,那你只能牺牲一些精确度,换回时间。

这时候我们可以做的就是增加top_k的大小,比如从原来的10个,增加到100个。

然后再使用更精确的算法来做rerank,使用一一计算打分的方式,做好排序。比如100次的遍历相似度计算的时间,我们还是可以接受的。

有朋友问我,Rerank如何集成到项目中呢?

答案就是:Rerank模型的方式集成到项目中。

在HuggingFace上面搜索,发现有很多Rerank模型,如下图。

图片

新的reranker模型:发布跨编码器模型 BAAI/bge-reranker-

### Rerank模型概述 Rerank模型在信息检索领域扮演着重要角色,特别是在提升搜索结果的质量方面。这类模型通常用于对初始检索阶段获得的结果列表进行二次排序,从而提高最终呈现给用户的搜索结果的相关性和准确性[^1]。 ### 原理阐述 Rerank模型的工作机制基于深度学习框架构建而成,能够理解查询意图并评估文档与查询之间的匹配程度。具体来说,通过预训练的语言表示模型获取文本特征,并利用这些特征计算候选文档相对于查询的概率得分。对于每一对查询-文档组合,模型会给出一个分数,该分数反映了二者之间语义相似度的高低。随后,依据此评分体系调整原始排名顺序,使得最有可能满足用户需求的内容排位靠前[^2]。 ### 实现方式 以`bge-reranker-large`为例说明如何实现一个有效的Rerank解决方案: #### 数据准备 收集大量高质量的人工标注数据集作为训练样本,确保覆盖广泛的主题范围以及多样化的表达形式。 #### 模型架构设计 采用Transformer结构为基础搭建神经网络,加入额外模块如注意力机制来捕捉长距离依赖关系,增强上下文感知能力。 #### 训练过程 使用交叉熵损失函数指导参数更新方向,迭代优化直至收敛稳定为止。期间还需定期验证测试集上的表现情况,防止过拟合现象发生。 ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "your_model_path" training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, evaluation_strategy="epoch", ) trainer = Trainer( model=model_name, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, ) trainer.train() ``` #### 部署上线 完成离线调优之后,将最优版本发布至线上环境供实时请求调用。考虑到性能因素,建议部署于GPU服务器之上加速推理速度[^5]。 ### 应用场景展示 实际业务场景下,Rerank技术被广泛应用到了各类平台之中,比如电子商务网站的商品推荐系统、社交软件的消息流个性化定制等。它不仅有助于改善用户体验,还能为企业带来可观经济效益。例如,在搜索引擎中先由Embedding模型筛选出若干条可能符合条件的信息片段,再经由Rerank处理后返回更加精准有序的答案集合给终端使用者查看[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Soyoger

听说打赏的都进了福布斯排行榜。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值