一、labelImg
1.1 介绍
labelImg 是一个图像标注工具,主要用于目标检测、图像分割等计算机视觉任务中。它允许用户通过简单的图形用户界面(GUI)来手动标注图像数据,从而生成可以被机器学习模型训练时使用的标注文件。
labelImg 的主要特点包括:
- 易于使用:具有直观的图形用户界面,使得用户可以快速上手并标注图像。除了常见的矩形框标注外,labelImg还支持多边形标注,使得用户可以对复杂形状的目标进行精确标注。
- 批量处理:用户可以一次性导入大量图像进行批量标注,大大提高了标注效率。
- 自动保存功能:在标注过程中,labelImg会自动保存用户的标注进度,即使意外中断也能恢复。
- 支持多种标注格式:可以导出多种常见的标注格式,如 VOC、COCO 和 YOLO 等,还支持导出为其他机器学习库所需的格式,如TensorFlow的TFRecord格式。
- 灵活的数据导入:可以直接导入图像文件夹,或者从其他源导入图像数据。
- 实时预览:在标注过程中,用户可以实时预览标注结果,从而调整标注框的位置和大小。
- 支持快捷键:为了提高标注效率,labelImg 提供了一系列快捷键,使用户可以快速切换不同的标注工具。
1.2 安装
通过pip命令进行安装,命令如下:
pip install labelImg
1.3 使用
通过命令行启动 labelImg 并导入需要标注的图像数据:
labelImg
二、labelme
2.1 介绍
labelme是一款由麻省理工(MIT)的计算机科学和人工智能实验室(CSAIL)研发的图像标注工具。这款工具允许用户创建定制化的标注任务或执行图像标注。其项目源代码已经开源,因此用户可以自由地使用和修改。
labelme的安装过程相对简单,但在不同的工作环境下可能需要安装不同的Python相关库。在安装时,建议创建不同的虚拟环境以避免库之间的冲突。此外,选择使用如清华镜像源等高速镜像源可以加快安装速度。
在labelme的使用过程中,用户可以将保存的json文件转化为掩码图片。这可以通过在终端中输入特定的命令labelme_json_to_dataset 来实现。转化后的图片包括原图、制作的标签以及原图+标签的显示效果图。需要注意的是,制作标签的png图片是单通道的,这与PASCAL VOC数据集提供的标签格式相同。
总的来说,labelme是一款功能强大且使用灵活的图像标注工具,适用于各种图像数据的标注任务。
2.2 安装
pip install labelme
三、makesense
3.1 介绍
MakeSense是一个图像标注工具,被YOLOv5官方推荐使用。它具有以下特点:
- 易上手:与其他工具相比,MakeSense的上手难度非常低,用户只需数分钟就能熟练掌握工作台中的功能选项,快速进入工作状态。
- 跨平台:作为一款web应用,MakeSense支持各个操作系统,用户可以在不同的设备上实现工作协同。
- 功能丰富:MakeSense提供了多种标注形状选项,包括矩形、点、线和多边形等,可以满足用户的不同需求。此外,它还支持多种导入和导出格式,如CSV、YOLO、VOC XML、VGG JSON、COCO JSON和像素掩膜等。
使用MakeSense进行图像数据标注的流程大致如下:
- 上传或拖拽图像到MakeSense的工作台。
- 点击“目标检测”,然后定义标签。用户可以根据需要添加一个或多个标签。
- 点击左侧的图像开始标注。在选择标注形状时,MakeSense提供了多种选项供用户选择。
- 如果用户有更多的图片需要标注,可以通过“操作”菜单下的“导入图像”功能将更多的图片导入到现有项目中。
- 完成标注后,用户可以选择合适的格式导出标注文件。
总之,MakeSense是一个简单易用、功能丰富的图像标注工具,适用于各种图像数据标注任务。
3.2 使用
Make Sensehttps://www.makesense.ai/
四、cvat
CVAT(Computer Vision Annotation Tool)是一款强大的计算机视觉标注工具,用于大规模图像和视频数据标注,为机器学习和深度学习模型的训练提供高质量的数据。
CVAT的主要功能包括图像和视频标注、动态标注与多级任务管理、自定义标注工具以及团队开发等。它支持各种标注类型,如矩形、椭圆、多边形、点等,并且允许用户自定义新的标注工具,以满足各种复杂的场景需求。CVAT还具有动态标注功能,用户可以在视频流中直接进行标注,提高工作效率。此外,CVAT还支持任务级别的管理和分配,可以方便地跟踪每个标注任务的状态,适合团队协作。
CVAT的优势在于其基于Web的界面设计,用户可以通过浏览器访问,无需安装任何客户端软件,大大降低了使用门槛。同时,CVAT提供了流畅且直观的交互体验,使得标注过程更加高效和便捷。此外,CVAT还提供了快捷键等便捷工具,以及线上检验标注作业是否合格等功能,进一步提高了标注效率和准确性。
然而,CVAT也存在一些局限性。例如,对于某些特定的标注需求,可能需要额外的开发或定制工作。此外,由于CVAT是基于Web的应用程序,因此在处理大量数据时可能会受到网络性能的影响。
总之,CVAT是一款功能强大、易于使用的计算机视觉标注工具,适用于各种规模的图像和视频数据标注项目。无论是个人用户还是团队用户,都可以通过CVAT高效地完成标注任务,为机器学习和深度学习模型的训练提供高质量的数据。