因为经常遇到各种特定的空间,有些没接触过,有些又容易弄混,这里做个记录,这篇应该会不断更新,毕竟空间概念这么多。 (注:这里只是最简单的介绍)
先解释相关概念。
相关概念:
完备性
简单说的话,就是对极限封闭。也就是说,如果对于空间 S S S内的一点 s i s_i si, lim i → ∞ s i = s \lim_{i\rightarrow\infty}s_i=s limi→∞si=s, s s s也属于空间 S S S的话,则称该空间具有完备性。
内积
说到内积,第一反应应该就是向量内积,即: ⟨ a , b ⟩ = ∣ a ∣ ∗ ∣ b ∣ ∗ cos θ \langle a,b \rangle = |a|*|b|*\cos\theta ⟨a,b⟩=∣a∣∗∣b∣∗cosθ,但更广泛的话,内积应该满足以下三个条件( f , g f,g f,g都是空间元素):
- 对称性: ⟨ f , g ⟩ = ⟨ g , f ⟩ \langle f,g \rangle = \langle g,f \rangle ⟨f,g⟩=⟨g,f⟩;
- 正定性: ⟨ f , f ⟩ ≥ 0 \langle f,f \rangle \ge0 ⟨f,f⟩≥0,当且仅当 f = 0 f=0 f=0时等号成立。
- 线性: ⟨ r 1 f 1 + r 2 f 2 , g ⟩ = r 1 ⟨ f 1 , g ⟩ + r 2 ⟨ f 2 , g ⟩ \langle r_1f_1+r_2f_2,g \rangle = r_1\langle f_1,g \rangle+r_2\langle f_2,g \rangle ⟨r1f1+r2f2,g⟩=r1⟨f1,g⟩+r2⟨f2,g⟩
空间
度量(距离)空间
设 X X X是非空集合,对于 X X X中的任意两个元素 x , y x,y x,y,按某一法则都对应唯一的实数 ρ ( x , y ) \rho(x,y) ρ(x,y),并满足下面三个条件(距离公理):
- 非负性: ρ ( x , y ) ≥ 0 \rho(x,y)\ge0 ρ(x,y)≥0,当且仅当 x = y x=y x=y时, ρ ( x , y ) = 0 \rho(x,y)=0 ρ(x,y)=0;
- 对称性: ρ ( x , y ) = ρ ( y , x ) \rho(x,y)=\rho(y,x) ρ(x,y)=ρ(y,x);
- 三角不等式:对任意 x , y , z x,y,z x,y,z, ρ ( x , y ) ≤ ρ ( x , z ) + ρ ( z , y ) \rho(x,y)\leq\rho(x,z)+\rho(z,y) ρ(x,y)≤ρ(x,z)+ρ(z,y)
则称
ρ
(
x
,
y
)
\rho(x,y)
ρ(x,y)为
x
x
x与
y
y
y的距离(或度量),并称
X
X
X是以
ρ
\rho
ρ为距离的距离空间,记作
(
X
,
ρ
)
(X,\rho)
(X,ρ)。
这里的距离不局限于“点空间”内的距离,比如下面两个也满足距离:
ρ
(
x
,
y
)
=
max
1
≤
k
≤
n
∣
x
k
−
y
k
∣
\rho(x,y)=\max\limits_{1\leq k\leq n}|x_k-y_k|
ρ(x,y)=1≤k≤nmax∣xk−yk∣
ρ
(
x
,
y
)
=
∑
k
=
1
n
∣
x
k
−
y
k
∣
\rho(x,y)=\sum_{k=1}^{n}|x_k-y_k|
ρ(x,y)=k=1∑n∣xk−yk∣
L
p
[
a
,
b
]
L^p[a,b]
Lp[a,b]表示区间
[
a
,
b
]
[a,b]
[a,b]绝对值
p
p
p次幂
L
L
L可积函数的全体,并把几乎处处相等的函数看成是同一个函数,对于
x
,
y
∈
L
p
[
a
,
b
]
x,y\in L^p[a,b]
x,y∈Lp[a,b],规定
ρ
(
x
,
y
)
=
[
∫
a
b
∣
x
(
t
)
−
y
(
t
)
∣
p
d
t
]
1
/
p
,
p
≥
1
\rho(x,y)=[\int_a^b|x(t)-y(t)|^pdt]^{1/p},p\ge1
ρ(x,y)=[∫ab∣x(t)−y(t)∣pdt]1/p,p≥1则
L
p
[
a
,
b
]
L^p[a,b]
Lp[a,b]构成一个距离空间,称为
p
p
p次幂可积函数空间。
线性空间
直观理解的话就是拥有加法和数乘的非空集合。首先要求非空,其次满足加法运算的4个属性:
- 加法交换律
- 加法结合律
- 存在零元: x + 0 = x x+0=x x+0=x
- 存在逆元: x + ( − x ) = 0 x+(-x)=0 x+(−x)=0
满足数乘的4个属性:
- 1 x = x 1x=x 1x=x
- a ( b x ) = ( a b ) x a(bx)=(ab)x a(bx)=(ab)x
- ( a + b ) x = a x + b x (a+b)x=ax+bx (a+b)x=ax+bx
- a ( x + y ) = a x + a y a(x+y)=ax+ay a(x+y)=ax+ay
赋范空间
设 X X X是实(或复)线性空间,如果对于 X X X中的每个元素 x x x,按照一定的法则对应于实数 ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣,且满足:
- ∣ ∣ x ∣ ∣ ≥ 0 ||x||\ge0 ∣∣x∣∣≥0,当且仅当 x x x等于零元( x = 0 x=0 x=0)时 ∣ ∣ x ∣ ∣ = 0 ||x||=0 ∣∣x∣∣=0;
- ∣ ∣ a x ∣ ∣ = ∣ a ∣ ∣ ∣ x ∣ ∣ ||ax||=|a|||x|| ∣∣ax∣∣=∣a∣∣∣x∣∣, a a a是实(或复)数;
- ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leq||x||+||y|| ∣∣x+y∣∣≤∣∣x∣∣+∣∣y∣∣
则称 X X X是实(或复)赋范线性空间, ∣ ∣ x ∣ ∣ ||x|| ∣∣x∣∣称为 x x x的范数。
注:赋范线性空间必然是距离空间。定义 ρ ( x , y ) = ∣ ∣ x − y ∣ ∣ \rho(x,y)=||x-y|| ρ(x,y)=∣∣x−y∣∣
与距离空间的不同在于:
- 平移不变性: d ( x + a , y + a ) = d ( x , y ) d(x+a,y+a)=d(x,y) d(x+a,y+a)=d(x,y), x , y , a ∈ X x,y,a\in X x,y,a∈X
- 齐次性: d ( a x , a y ) = ∣ a ∣ d ( x , y ) d(ax,ay)=|a|d(x,y) d(ax,ay)=∣a∣d(x,y), x , y ∈ X x,y\in X x,y∈X, a ∈ K a\in K a∈K。( K K K是实(或复)数域)。
Banach 空间
如果赋范线性空间是完备的,则称该赋范线性空间是Banach 空间。
内积空间
(注:这里的括号全都应该为尖括号)
设
X
X
X是定义在实(或复)数域
K
K
K上的线性空间,若对于
X
X
X任意一对有序元素
x
,
y
x,y
x,y, 恒对应数域
K
K
K的值
(
x
,
y
)
(x, y)
(x,y),且满足:
- ( a x , y ) = a ( x , y ) (ax,y)=a(x,y) (ax,y)=a(x,y)
- ( x + y , z ) = ( x , z ) + ( y , z ) (x+y,z)=(x,z)+(y,z) (x+y,z)=(x,z)+(y,z)
- ( x , y ) = ( y , x ) (x,y)=(y,x) (x,y)=(y,x)
- ( x , x ) ≥ 0 (x,x)\ge0 (x,x)≥0,当且仅当 x = 0 x=0 x=0时等号成立
则称 X X X为内积空间, ( x , y ) (x,y) (x,y)称为 x , y x,y x,y的内积。跟上面内积的概念可以结合理解。
Hilbert 空间
完备的内积空间称为Hilbert空间,且Hilbert空间必为Banach 空间。
或者换种说法:
Hilbert空间是:完备的,可能是无限维的,被赋予内积的线性空间。