各种空间的简单介绍

本文概述了完备性、内积、度量空间、线性空间、赋范空间、Banach空间和Hilbert空间的基本概念,以及它们之间的关系和区别,帮助理解在信息技术中这些空间的重要性和应用。


因为经常遇到各种特定的空间,有些没接触过,有些又容易弄混,这里做个记录,这篇应该会不断更新,毕竟空间概念这么多。 (注:这里只是最简单的介绍)
先解释相关概念。

相关概念:

完备性

简单说的话,就是对极限封闭。也就是说,如果对于空间 S S S内的一点 s i s_i si lim ⁡ i → ∞ s i = s \lim_{i\rightarrow\infty}s_i=s limisi=s s s s也属于空间 S S S的话,则称该空间具有完备性。

内积

说到内积,第一反应应该就是向量内积,即: ⟨ a , b ⟩ = ∣ a ∣ ∗ ∣ b ∣ ∗ cos ⁡ θ \langle a,b \rangle = |a|*|b|*\cos\theta a,b=abcosθ,但更广泛的话,内积应该满足以下三个条件( f , g f,g f,g都是空间元素):

  1. 对称性: ⟨ f , g ⟩ = ⟨ g , f ⟩ \langle f,g \rangle = \langle g,f \rangle f,g=g,f
  2. 正定性: ⟨ f , f ⟩ ≥ 0 \langle f,f \rangle \ge0 f,f0,当且仅当 f = 0 f=0 f=0时等号成立。
  3. 线性: ⟨ r 1 f 1 + r 2 f 2 , g ⟩ = r 1 ⟨ f 1 , g ⟩ + r 2 ⟨ f 2 , g ⟩ \langle r_1f_1+r_2f_2,g \rangle = r_1\langle f_1,g \rangle+r_2\langle f_2,g \rangle r1f1+r2f2,g=r1f1,g+r2f2,g

空间

度量(距离)空间

X X X是非空集合,对于 X X X中的任意两个元素 x , y x,y x,y,按某一法则都对应唯一的实数 ρ ( x , y ) \rho(x,y) ρ(x,y),并满足下面三个条件(距离公理):

  1. 非负性: ρ ( x , y ) ≥ 0 \rho(x,y)\ge0 ρ(x,y)0,当且仅当 x = y x=y x=y时, ρ ( x , y ) = 0 \rho(x,y)=0 ρ(x,y)=0;
  2. 对称性: ρ ( x , y ) = ρ ( y , x ) \rho(x,y)=\rho(y,x) ρ(x,y)=ρ(y,x);
  3. 三角不等式:对任意 x , y , z x,y,z x,y,z ρ ( x , y ) ≤ ρ ( x , z ) + ρ ( z , y ) \rho(x,y)\leq\rho(x,z)+\rho(z,y) ρ(x,y)ρ(x,z)+ρ(z,y)

则称 ρ ( x , y ) \rho(x,y) ρ(x,y) x x x y y y的距离(或度量),并称 X X X是以 ρ \rho ρ为距离的距离空间,记作 ( X , ρ ) (X,\rho) (X,ρ)
这里的距离不局限于“点空间”内的距离,比如下面两个也满足距离: ρ ( x , y ) = max ⁡ 1 ≤ k ≤ n ∣ x k − y k ∣ \rho(x,y)=\max\limits_{1\leq k\leq n}|x_k-y_k| ρ(x,y)=1knmaxxkyk ρ ( x , y ) = ∑ k = 1 n ∣ x k − y k ∣ \rho(x,y)=\sum_{k=1}^{n}|x_k-y_k| ρ(x,y)=k=1nxkyk L p [ a , b ] L^p[a,b] Lp[a,b]表示区间 [ a , b ] [a,b] [a,b]绝对值 p p p次幂 L L L可积函数的全体,并把几乎处处相等的函数看成是同一个函数,对于 x , y ∈ L p [ a , b ] x,y\in L^p[a,b] x,yLp[a,b],规定 ρ ( x , y ) = [ ∫ a b ∣ x ( t ) − y ( t ) ∣ p d t ] 1 / p , p ≥ 1 \rho(x,y)=[\int_a^b|x(t)-y(t)|^pdt]^{1/p},p\ge1 ρ(x,y)=[abx(t)y(t)pdt]1/p,p1 L p [ a , b ] L^p[a,b] Lp[a,b]构成一个距离空间,称为 p p p次幂可积函数空间。

线性空间

直观理解的话就是拥有加法和数乘的非空集合。首先要求非空,其次满足加法运算的4个属性:

  1. 加法交换律
  2. 加法结合律
  3. 存在零元: x + 0 = x x+0=x x+0=x
  4. 存在逆元: x + ( − x ) = 0 x+(-x)=0 x+(x)=0

满足数乘的4个属性:

  1. 1 x = x 1x=x 1x=x
  2. a ( b x ) = ( a b ) x a(bx)=(ab)x a(bx)=(ab)x
  3. ( a + b ) x = a x + b x (a+b)x=ax+bx (a+b)x=ax+bx
  4. a ( x + y ) = a x + a y a(x+y)=ax+ay a(x+y)=ax+ay

赋范空间

X X X是实(或复)线性空间,如果对于 X X X中的每个元素 x x x,按照一定的法则对应于实数 ∣ ∣ x ∣ ∣ ||x|| x,且满足:

  1. ∣ ∣ x ∣ ∣ ≥ 0 ||x||\ge0 x0,当且仅当 x x x等于零元( x = 0 x=0 x=0)时 ∣ ∣ x ∣ ∣ = 0 ||x||=0 x=0;
  2. ∣ ∣ a x ∣ ∣ = ∣ a ∣ ∣ ∣ x ∣ ∣ ||ax||=|a|||x|| ax=ax a a a是实(或复)数;
  3. ∣ ∣ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ ||x+y||\leq||x||+||y|| x+yx+y

则称 X X X是实(或复)赋范线性空间, ∣ ∣ x ∣ ∣ ||x|| x称为 x x x的范数。

注:赋范线性空间必然是距离空间。定义 ρ ( x , y ) = ∣ ∣ x − y ∣ ∣ \rho(x,y)=||x-y|| ρ(x,y)=xy

与距离空间的不同在于:

  1. 平移不变性: d ( x + a , y + a ) = d ( x , y ) d(x+a,y+a)=d(x,y) d(x+a,y+a)=d(x,y) x , y , a ∈ X x,y,a\in X x,y,aX
  2. 齐次性: d ( a x , a y ) = ∣ a ∣ d ( x , y ) d(ax,ay)=|a|d(x,y) d(ax,ay)=ad(x,y) x , y ∈ X x,y\in X x,yX a ∈ K a\in K aK。( K K K是实(或复)数域)。

Banach 空间

如果赋范线性空间是完备的,则称该赋范线性空间是Banach 空间。

内积空间

(注:这里的括号全都应该为尖括号)
X X X是定义在实(或复)数域 K K K上的线性空间,若对于 X X X任意一对有序元素 x , y x,y x,y, 恒对应数域 K K K的值 ( x , y ) (x, y) (x,y),且满足:

  1. ( a x , y ) = a ( x , y ) (ax,y)=a(x,y) (ax,y)=a(x,y)
  2. ( x + y , z ) = ( x , z ) + ( y , z ) (x+y,z)=(x,z)+(y,z) (x+y,z)=(x,z)+(y,z)
  3. ( x , y ) = ( y , x ) (x,y)=(y,x) (x,y)=(y,x)
  4. ( x , x ) ≥ 0 (x,x)\ge0 (x,x)0,当且仅当 x = 0 x=0 x=0时等号成立

则称 X X X为内积空间, ( x , y ) (x,y) (x,y)称为 x , y x,y x,y的内积。跟上面内积的概念可以结合理解。

Hilbert 空间

完备的内积空间称为Hilbert空间,且Hilbert空间必为Banach 空间。
或者换种说法:
Hilbert空间是:完备的,可能是无限维的,被赋予内积的线性空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值