
学习总结
文章平均质量分 84
Super_ZLW
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
csdn博客转到github
由于csdn在某些方面做得不是那么好,就决定趁着现在文章不多的时候迁移到其它地方稳妥一点,花了一个下午加晚上的时间总算基本搭好了,一些小问题之后再慢慢去改善。新博客地址为:SuperZLW’s Blog至于这里,应该也会继续下去,看心情吧。...原创 2021-08-04 14:28:23 · 363 阅读 · 0 评论 -
【学习随记】时间空间复杂度
时间复杂度常用的时间复杂度有7种:常数时间复杂度;O(1)O(1)O(1)对数时间复杂度;O(logn)O(\log n)O(logn)线性时间复杂度;O(n)O(n)O(n)平方时间复杂度;O(n2)O(n^2)O(n2)立方时间复杂度;O(n3)O(n^3)O(n3)指数时间复杂度;O(2n)O(2^n)O(2n)阶乘时间复杂度;O(n!)O(n!)O(n!)注:从上到下时间复杂度越来越大常规的时间复杂度都容易分析,麻烦的是递归,遇到递归时一般需要把状态树画出来。比如说代码原创 2021-07-22 04:49:39 · 137 阅读 · 0 评论 -
支持向量机(SVM)
目录引入线性SVM硬间隔最大化软间隔最大化非线性SVM多项式核(Polynomial Kernel)径向基函数(Radial Basis Functions)Mercer's Condition相关补充引入对于上一篇提到的风险(Risk):R(w)≤Remp(w)+ϵ(N,p∗,h)R(w)\leq R_{emp}(w)+\epsilon(N,p^*,h)R(w)≤Remp(w)+ϵ(N,p∗,h)其中NNN是训练数据量,p∗p^*p∗是到达边界的概率,hhh是VC维度。为了最小化风险,经典的机器学原创 2021-07-21 22:26:09 · 1279 阅读 · 0 评论 -
线性降维与统计学习理论(Linear Dimensionality Reduction & Statistical Learning Theory)
线性降维(Linear Dimensionality Reduction)(以PCA为例)引入主成分分析(Principal Component Analysis,PCA)是最常见的线性降维方法。拿之前的线性回归举例,对于最小二乘法的线性回归,其求解参数为:w^=(X^X^)−1X^y\hat{w}=(\hat{X}\hat{X})^{-1}\hat{X}yw^=(X^X^)−1X^y其中X^∈Rd×n\hat{X}\in \R^{d\times n}X^∈Rd×n,y∈Rn×1y\in \R^{n\原创 2021-07-18 22:55:45 · 651 阅读 · 2 评论 -
分类问题(Classification)
目录引入判别函数(Discriminant Functions)基本知识线性判别函数(Linear Discriminant Functions)二分类多分类Fisher 判别分析(Fisher Discriminant Analysis)一个例子用作引出正式开始尝试最大化两个类的均值(效果不好)同时考虑均值和方差(正式引入Fisher线性判别法)感知器算法(Perceptron Algorithm)逻辑回归(Logistic Regression)Generative vs. Discriminative原创 2021-07-17 18:29:37 · 2464 阅读 · 0 评论 -
线性回归(Linear Regression)
目录引入最小二乘法线性回归(Least Squares Linear Regression)一次项回归多项式回归(Polynomial Regression)回归的最大似然法(Maximum Likelihood Approach to Regression)概率回归(Probabilistic Regression)回归中的损失函数(Loss Functions in Regression)贝叶斯线性回归(Bayesian Linear Regression)最大后验(MAP)MAP与正则化的最小二乘法的原创 2021-07-16 23:33:31 · 1221 阅读 · 1 评论 -
概率密度估计(Probability Density Estimation)--Part3:混合模型
引入在结束了有参估计,无参估计后,现在记录混合模型(Mixture models)。这里附一张有参和无参的对比图(本来应该附在Part 2的,不想回去改了。。):字面意思,混合模型就是有参模型和无参模型的混合。举个例子,高斯模型的混合(Mixture of Gaussians,MoG)。现有三个高斯模型如下:我们可以将其视为:其概率密度可以近似表示为:p(x)=∑j=1Mp(x∣j)p(j)p(x)=\sum^M_{j=1}p(x|j)p(j)p(x)=j=1∑Mp(x∣j)p(j)原创 2021-07-12 06:00:48 · 1402 阅读 · 0 评论 -
概率密度估计(Probability Density Estimation)--Part 2:无参估计
目录引入直方图(Histograms)KDEParzen WindowGaussian KernelGeneral Formulation – Arbitrary Kernel各种内核的总结高斯核(Gaussian Kernel)Parzen windowEpanechnikov kernel总结KNN(附)作业相关代码引入接上一篇的有参估计,这篇介绍无参估计,也就是说在这里我们事先不知道数据的模型,而要求数据进行划分,这也是实际中比较常见的情况。这主要介绍三种无参估计方法,分别是:1. 直方图(H原创 2021-07-01 06:36:54 · 1615 阅读 · 2 评论 -
学习记录_Computer Vision1_作业1_(2)_Projective Transformation
(2)Projective Transformation作业要求:简单总结一下,就是说:二级标题三级标题四级标题五级标题六级标题原创 2020-12-24 04:35:21 · 457 阅读 · 4 评论 -
学习记录_Computer Vision1_作业1_(1) Bayer Interpolation
这次作业需要记录的有三道题,包括:拜尔图像目标转换图片过滤和边缘检测(1)Bayer Interpolation作业要求:简单来说,即是给出一张Bayer图片,将其转化为RGB图。作业给出的图片如下:这里先对Bayer图进行简要说明。与一般RGB图不同,Bayer图的像素分布如下图所示:由此可以发现,在Bayer图中,每个像素点都是由单一颜色所控制,而且绿色所占的比例是其他两种颜色的两倍,所以整张图片看起来会偏绿,我们所要做的就是通过插值将每个像素点的其他两种颜色算出来。步骤原创 2020-12-18 12:22:37 · 830 阅读 · 8 评论