注意力熵保存

def scaled_dot_product_attention(query_states, key_states, attn_mask=None):
    """
    Calculates scaled dot-product attention scores.

    Parameters:
        query_states: torch.Tensor of shape (bs, n_heads, q_len, d_h_qk)
        key_states: torch.Tensor of shape (bs, n_heads, kv_len, d_h_qk)
        attn_mask: torch.Tensor of shape (bs, n_heads, q_len, kv_len), optional

    Returns:
        torch.Tensor: Attention scores after softmax of shape (bs, n_heads, q_len, kv_len)
    """
    # Calculate the raw attention scores from query and key
    d_h_qk = query_states.size(-1)  # Dimension of the query/key vectors in each head
    raw_scores = torch.matmul(query_states, key_states.transpose(-2, -1))
    # Scale scores by the inverse square root of the dimensionality
    scaled_scores = raw_scores / (d_h_qk ** 0.5)

    # Apply the attention mask if provided (assuming mask elements are 0 for positions to attend to and -inf or a large negative value for masked positions)
    if attn_mask is not None:
        scaled_scores = scaled_scores + attn_mask

    # Apply softmax to get probabilities (dim=-1 to softmax over the key/value dimension kv_len)
    attention_probs = F.softmax(scaled_scores, dim=-1)

    return attention_probs


def entropy_of_distributions(tensor):
    """
    Calculates the entropy of distributions for each q_len in the tensor of shape (bs, n_heads, q_len, kv_len).

    Parameters:
        tensor: torch.Tensor of shape (bs, n_heads, q_len, kv_len) containing probability distributions

    Returns:
        torch.Tensor: Entropy values for each distribution of shape (bs, n_heads, q_len)
    """
    # Ensure the tensor values are treated as probabilities, i.e., >= 0 and sum to 1 across kv_len
    tensor = torch.clamp(tensor, min=0)  # Clamp values to be >= 0 to handle potential numerical issues
    tensor /= tensor.sum(dim=-1, keepdim=True)  # Normalize to ensure sums to 1 along kv_len

    # Calculate entropy
    log_tensor = torch.log2(tensor + 1e-6)  # Adding epsilon to avoid log(0)
    entropy = -torch.sum(tensor * log_tensor, dim=-1)

    return entropy


def save_attention_details(query_states, key_states, causal_mask):
    """
    计算注意力得分并保存注意力得分的形状和熵到文件中。

    参数:
    - query_states: 查询向量(tensor), shape: (bs, n_heads, q_len, d_h_qk)
    - key_states: 键向量(tensor), shape: (bs, n_heads, kv_len, d_h_qk)
    - causal_mask: 因果掩码(tensor), shape: (bs, n_heads, q_len, kv_len)
    """
    # 计算注意力得分
    attn_score = scaled_dot_product_attention(query_states, key_states, attn_mask=causal_mask)

    # 计算注意力得分的熵
    attn_entropy = entropy_of_distributions(attn_score)  # 假设这个函数已经定义

    # 打开文件进行追加
    with open('/data2/hkzheng/clm/tensor.txt', 'a') as f:
        # 写入attn_score的形状
        attn_score_shape_str = str(attn_score.shape)
        f.write('attn_score shape: ' + attn_score_shape_str + '\n')

        # 选择attn_entropy的第一个元素,并将其从GPU转移到CPU,然后转换为numpy数组
        tensor_np = attn_entropy[0].cpu().numpy()

        # 写入attn_entropy的形状
        tensor_np_shape_str = str(tensor_np.shape)
        f.write('attn_entropy shape: ' + tensor_np_shape_str + '\n')

        # 写入tensor_np的内容
        np.savetxt(f, tensor_np, fmt='%.3e', delimiter=' ', newline='\n')
        f.write('\n')  # 在数组后添加一个新行以便区分不同的写入块

<think>好的,我现在需要帮助用户解决在ArcGIS Pro中使用arcpy实现权法的问题。用户需要代码示例和关键注意事项。首先,我得回忆一下权法的基本原理和步骤,确保自己理解正确。权法是一种客观赋权方法,通过计算各指标的值来确定权重,值越小说明该指标提供的信息量越大,权重也就越高。 接下来,我需要考虑如何在ArcGIS Pro中使用arcpy来实现这一过程。用户可能已经熟悉ArcPy库,但需要具体的代码示例。首先,我应该分解权法的步骤,然后逐步转化为代码。 权法的步骤大致如下: 1. 数据标准化:将各栅格数据进行标准化处理,消除量纲影响。通常有正向指标和负向指标的不同处理方式。 2. 计算每个指标的比重:将标准化后的数据转换为概率分布。 3. 计算信息:根据信息公式计算每个指标的值。 4. 计算权重:根据值计算各指标的权重。 5. 应用权重进行数据融合:将各指标数据与其权重相乘并求和,得到综合评价结果。 在代码实现上,需要处理栅格数据。可能需要使用arcpy的Raster类和相关函数,如RasterToNumPyArray将栅格转换为数组进行计算,处理后再转换回栅格。同时,需要注意数据类型的转换,避免计算时出现类型错误。 注意事项方面,首先需要确保所有输入栅格的空间参考和分辨率一致,否则无法正确对齐数据。其次,处理大规模数据时,内存管理很重要,可能需要分块处理或使用临时文件。另外,标准化方法的选择要根据指标方向(正向或负向)来决定,这会影响结果。 代码结构大致可以分为几个部分: - 输入参数处理:获取输入的栅格数据列表。 - 数据标准化:遍历每个栅格,进行标准化处理。 - 计算比重矩阵:将标准化后的数据转换为概率分布。 - 计算值和权重:应用权公式计算。 - 生成综合评价结果:加权求和。 - 保存输出。 需要注意的细节包括处理0值,因为在计算信息时,log(0)会导致错误,可能需要加上一个极小值ε来避免。另外,数据标准化时,可能需要使用最小-最大归一化方法,或者其他方法如z-score标准化,但根据权法的要求,通常使用线性标准化到[0,1]区间。 可能的错误点包括栅格数据无法正确读取,数组形状不一致导致计算错误,以及内存不足的问题。因此,在代码中需要添加异常处理,确保每个步骤都能正确执行,并在处理大文件时分块处理。 另外,用户可能需要将整个流程封装成地理处理工具,这样可以通过工具箱来运行,方便输入参数和输出设置。这涉及到使用arcpy的工具箱脚本结构,定义参数和工具描述。 最后,测试代码时,建议先用小规模的数据进行验证,确保每个步骤的输出符合预期,再扩展到大规模数据。同时,记录日志或使用arcpy.AddMessage输出进度信息,方便调试。 总结下来,代码示例需要涵盖以上步骤,并注意数据处理的细节和性能优化。而注意事项则需要强调数据一致性、内存管理、标准化方法的选择、异常处理等关键点。</think>### ArcGIS Pro中使用arcpy实现权法的完整方案 #### 一、实现原理 权法通过计算指标的信息值确定权重,值越小表示该指标离散程度越大,信息量越多,权重越高。核心公式: $$ e_j = -\frac{1}{\ln n}\sum_{i=1}^{n}p_{ij}\ln p_{ij} $$ $$ w_j = \frac{1 - e_j}{\sum_{k=1}^{m}(1 - e_k)} $$ #### 二、代码实现(分块处理版本) ```python import arcpy import numpy as np from arcpy.sa import * def entropy_weight(input_rasters, output_raster): # 参数校验 if len(input_rasters) < 2: arcpy.AddError("至少需要2个输入栅格") return try: # 创建临时文件夹 temp_dir = arcpy.env.scratchFolder # 初始化参数 n_indicators = len(input_rasters) block_size = 1024 # 分块大小 # 获取第一个栅格的空间参考 desc = arcpy.Describe(input_rasters[0]) spatial_ref = desc.spatialReference cell_size = desc.meanCellWidth # 创建权重存储数组 weights = np.zeros(n_indicators) # 第一遍遍历:计算各指标统计量 min_vals = [] max_vals = [] for idx, raster in enumerate(input_rasters): arr = arcpy.RasterToNumPyArray(raster, nodata_to_value=0) min_vals.append(np.min(arr)) max_vals.append(np.max(arr)) # 第二遍遍历:分块计算权重 with arcpy.da.Walk(input_rasters[0], datatype="Raster") as walk: for dirpath, dirnames, filenames in walk: for filename in filenames: template_raster = arcpy.Raster(os.path.join(dirpath, filename)) for x in range(0, template_raster.width, block_size): for y in range(0, template_raster.height, block_size): # 读取分块数据 blocks = [] for raster in input_rasters: arr_block = arcpy.RasterToNumPyArray( raster, lower_left_corner=[x*cell_size, y*cell_size], ncols=block_size, nrows=block_size ) blocks.append(arr_block) # 数据标准化 normalized = [] for i in range(n_indicators): arr = (blocks[i] - min_vals[i]) / (max_vals[i] - min_vals[i] + 1e-12) normalized.append(arr) # 计算概率矩阵 p_matrix = np.stack(normalized, axis=-1) p_matrix = p_matrix / (p_matrix.sum(axis=-1, keepdims=True) + 1e-12) # 计算值 entropy = -np.sum(p_matrix * np.log(p_matrix + 1e-12), axis=(0,1)) / np.log(p_matrix.size) weights += (1 - entropy) # 归一化权重 weights /= weights.sum() # 第三遍遍历:加权融合 out_blocks = [] with arcpy.da.Walk(input_rasters[0], datatype="Raster") as walk: for dirpath, dirnames, filenames in walk: for filename in filenames: for x in range(0, template_raster.width, block_size): for y in range(0, template_raster.height, block_size): weighted_sum = None for i, raster in enumerate(input_rasters): arr = arcpy.RasterToNumPyArray( raster, lower_left_corner=[x*cell_size, y*cell_size], ncols=block_size, nrows=block_size ) if weighted_sum is None: weighted_sum = arr * weights[i] else: weighted_sum += arr * weights[i] out_blocks.append(weighted_sum) # 合并分块结果 final_array = np.vstack([np.hstack(block_row) for block_row in out_blocks]) # 保存结果 output = arcpy.NumPyArrayToRaster( final_array, lower_left_corner=arcpy.Point(template_raster.extent.XMin, template_raster.extent.YMin), x_cell_size=cell_size, y_cell_size=cell_size ) output.save(output_raster) arcpy.AddMessage("权法计算完成!权重分布:{}".format(weights)) return output except arcpy.ExecuteError: arcpy.AddError(arcpy.GetMessages(2)) except Exception as e: arcpy.AddError(str(e)) # 使用示例 if __name__ == "__main__": arcpy.env.overwriteOutput = True input_rasters = ["C:/Data/indicator1.tif", "C:/Data/indicator2.tif"] output_raster = "C:/Output/EntropyWeightResult.tif" entropy_weight(input_rasters, output_raster) ``` #### 三、关键注意事项 1. **数据预处理要求** - 所有输入栅格必须具有相同的: $$ \text{空间参考} \quad \text{像元大小} \quad \text{行列数} \quad \text{范围} $$ - 建议使用`Resample`工具统一分辨率,使用`Project Raster`统一坐标系[^1] 2. **内存优化策略** - 分块处理大小建议设置为1024x1024像素 - 启用arcpy内存管理: ```python arcpy.env.compression = "LZ77" arcpy.env.pyramid = "NONE" ``` 3. **特殊值处理** - 对0值添加极小量避免对数运算错误: ```python p_matrix = (p_matrix + 1e-12) / (np.sum(p_matrix, axis=0) + 1e-12) ``` 4. **权重验证** - 添加权重合理性检查: ```python if np.any(weights < 0) or not np.isclose(np.sum(weights), 1.0): raise ValueError("权重计算异常") ``` 5. **性能提升技巧** - 启用并行处理: ```python arcpy.env.parallelProcessingFactor = "75%" ``` - 使用内存型文件系统存储中间结果 #### 四、应用场景建议 该工具特别适用于: 1. 生态环境评价:整合多个生态因子 2. 土地适宜性分析:融合地形、土壤、水文等指标 3. 灾害风险评估:加权叠加致灾因子 4. 资源承载力评估:综合社会经济与自然要素[^1] #### 五、调试建议 1. 使用测试数据集(建议小于1GB)验证流程 2. 添加日志记录: ```python arcpy.AddMessage(f"正在处理第{i+1}个指标...") ``` 3. 检查中间结果: ```python temp_raster = os.path.join(temp_dir, f"temp_{i}.tif") arcpy.CopyRaster_management(normalized_raster, temp_raster) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值