全文检索Lucene(三)----查询,分词器,排序,过滤,高亮

本文详细介绍了Lucene的查询操作,包括关键词、范围、通配符、模糊和短语查询,以及布尔查询的使用。同时讨论了QueryParser与MultiFieldQueryParser的区别。接着,文章阐述了分词器的重要性和工作流程,如StandardAnalyzer、CJKAnalyzer以及第三方的IKAnalyzer。此外,还讲解了如何通过Boost和Sort调整搜索结果的排序,以及使用Filter进行结果过滤。最后,提到了高亮显示的关键类,并给出了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lucene查询:
查询出所有
关键词查询
范围查询
通配符查询
模糊查询
短语查询
布尔查询

QueryParser与MultiFieldQueryParser的区别
QueryParser:只在一个字段中查询
MultiFieldQueryParser:可以在多个字段查询

布尔查询:
public void add(Query query, Occur occur)

Occur 用于表示布尔查询子句关系的类,包括:
Occur.MUST,Occur.MUST_NOT,Occur.SHOULD。

1, MUST和MUST:取得连个查询子句的交集。
2, MUST和MUST_NOT:包含MUST并且查询结果中不包含MUST_NOT的检索结果。
3, SHOULD与SHOULD,表示“或”关系,最终检索结果为所有检索子句的并集。

一般不单独使用,因为单独就不应使用BooleanQuery了。

使用时注意:
1, 单独使用MUST_NOT:无意义,检索无结果。(也不报错)
2, MUST_NOT和MUST_NOT:无意义,检索无结果。(也不报错)

3, 单独使用SHOULD:结果相当于MUST。
4, SHOULD和MUST_NOT: 此时SHOULD相当于MUST,结果同MUST和MUST_NOT。
5, MUST和SHOULD:此时SHOULD无意义,结果为MUST子句的检索结果。

代码示例(utils和bean类可以去上一篇文章中去找):

package com.my.lucene;

import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.document.Document;
import org.apache.lucene.index.Term;
import org.apache.lucene.queryParser.MultiFieldQueryParser;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.FuzzyQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.MatchAllDocsQuery;
import org.apache.lucene.search.NumericRangeQuery;
import org.apache.lucene.search.PhraseQuery;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.WildcardQuery;
import org.apache.lucene.util.Version;
import org.junit.Test;

import com.my.bean.Article;
import com.my.utils.ArticleDocumentUtils;
import com.my.utils.Configuration;

public class QueryTest {

	@Test
	public void searchByString() throws Exception {
		// 搜索条件
		String queryString = "content:lucene";
		// String queryString = "全文 OR 用户";
		// String queryString = "全文  AND 用户";

		//把查询字符串转为Query对象
		QueryParser queryParser = new MultiFieldQueryParser(Version.LUCENE_30,new String[] { "title", "content" },Configuration.getAnalyzer()); // 在title与content中查询
		Query query = queryParser.parse(queryString);

		//查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		//处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			Document doc = indexSearcher.doc(scoreDocs[i].doc);
			list.add(ArticleDocumentUtils.document2Article(doc));
		}
		indexSearcher.close();

		//显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}

	@Test
	public void searchByQuery() throws Exception {
		
		Query query = new TermQuery(new Term("title", "lucene"));
		// Query query = new TermQuery(new Term("content", "lucene"));
		System.out.println("对应的查询字符串为:" + query.toString());

		//查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		//处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			Document doc = indexSearcher.doc(scoreDocs[i].doc);
			list.add(ArticleDocumentUtils.document2Article(doc));
		}
		indexSearcher.close();

		// 显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}

	// 查询出所有文档
	@Test
	public void testMatchAllDocsQuery() {
		// 对应的查询字符串为:*:*
		Query query = new MatchAllDocsQuery();
		searchByQuery(query);
	}

	// 关键词查询
	@Test
	public void testTermQuery() {
		// 对应的查询字符串为:title:lucene
		Query query = new TermQuery(new Term("title", "lucene"));
		searchByQuery(query);
	}

	// 范围查询
	@Test
	public void testRangeQuery() {
		// 对应的查询字符串为:id:[5 TO 15]
		// Query query = NumericRangeQuery.newIntRange("id", 5, 15, true, true);
		// 对应的查询字符串为:id:{5 TO 15}
		// Query query = NumericRangeQuery.newIntRange("id", 5, 15, false,
		// false);
		// 对应的查询字符串为:id:[5 TO 15}
		Query query = NumericRangeQuery.newIntRange("id", 5, 15, true, false);
		searchByQuery(query);
	}

	// 通配符查询
	// ? 代表1个字符
	// * 代表0个或多个字符
	@Test
	public void testWildcardQuery() {
		// 对应的查询字符串为:title:lucen?
		// Query query = new WildcardQuery(new Term("title", "lucen?"));
		// 对应的查询字符串为:title:luce*
		Query query = new WildcardQuery(new Term("title", "luce*"));

		searchByQuery(query);
	}

	// 模糊查询
	@Test
	public void testFuzzyQuery() {
		// 对应的查询字符串为:title:lucena~0.5
		// Query query = new FuzzyQuery(new Term("title", "lucena"));

		// 第2个参数minimumSimilarity(相似度)的取值范围是 0<= minimumSimilarity < 1
		// minimumSimilarity(相似度)是指超过多少字母相同就可以查出来。
		// 如指定0.7,表示相同的字符超过70%就可以查出来(如果刚好有70%相同则查不出来)
		Query query = new FuzzyQuery(new Term("title", "luceneutii"), 0.7F);
		searchByQuery(query);
	}

	// 短语查询
	@Test
	public void testPhraseQuery() {
		// 对应的查询字符串为:title:"lucene ? ? 框架"
		PhraseQuery phraseQuery = new PhraseQuery();
		// phraseQuery.add(new Term("title", "lucene"), 0); // 指定词的位置,第1个从0开始
		// phraseQuery.add(new Term("title", "框架"), 3);

		// 对应的查询字符串为:title:"lucene 框架"~5
		phraseQuery.add(new Term("title", "lucene"));
		phraseQuery.add(new Term("title", "框架"));
		phraseQuery.setSlop(5); // 词之间的间隔最多不超过5个

		searchByQuery(phraseQuery);
	}

	// 布尔查询
	@Test
	public void testBooleanQuery() {
		BooleanQuery booleanQuery = new BooleanQuery();
		// booleanQuery.add(query, Occur.MUST); // 必须满足
		// booleanQuery.add(query, Occur.MUST_NOT); // 非
		// booleanQuery.add(query, Occur.SHOULD); // 多个SHOULD一起用是OR的关系

		Query query1 = new TermQuery(new Term("title", "lucene"));
		Query query2 = NumericRangeQuery.newIntRange("id", 5, 15, false, true);

		// // 对应的查询字符串为:+title:lucene +id:{5 TO 15]
		// // 对应的查询字符串为:title:lucene AND id:{5 TO 15]
		// booleanQuery.add(query1, Occur.MUST);
		// booleanQuery.add(query2, Occur.MUST);

		// // 对应的查询字符串为:+title:lucene -id:{5 TO 15]
		// // 对应的查询字符串为:title:lucene NOT id:{5 TO 15]
		// booleanQuery.add(query1, Occur.MUST);
		// booleanQuery.add(query2, Occur.MUST_NOT);

		// 对应的查询字符串为:title:lucene id:{5 TO 15]
		// 对应的查询字符串为:title:lucene OR id:{5 TO 15]
		booleanQuery.add(query1, Occur.SHOULD);
		booleanQuery.add(query2, Occur.SHOULD);

		// 以下三种组合不要使用
		// MUST 与 SHOULD,只有MUST的结果(这时的SHOULD相当于没有指定)
		// MUST_NOT 与 MUST_NOT,没有结果,也不会报错
		// MUST_NOT 与 SHOULD,这时SHOULD相当于MUST,他的条件必须满足,即相当于MUST与MUST_NOT的效果

		// 可以使用括号
		// 对应的查询字符串为:+(title:lucene OR content:lucene) +id:{5 TO 15]

		searchByQuery(booleanQuery);
	}

	//查询并显示结果
	private void searchByQuery(Query query) {
		try {
			System.out.println(" //对应的查询字符串为:" + query.toString());

			//查询,得到中间结果
			IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
			TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
			ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

			//处理结果
			List<Article> list = new ArrayList<Article>();
			for (int i = 0; i < scoreDocs.length; i++) {
				Document doc = indexSearcher.doc(scoreDocs[i].doc);
				list.add(ArticleDocumentUtils.document2Article(doc));
			}
			indexSearcher.close();

			//显示结果
			System.out.println("总结果数量为:" + list.size());
			for (Article article : list) {
				System.out.println("--------> id = " + article.getId());
				System.out.println("title  = " + article.getTitle());
				System.out.println("content= " + article.getContent());
			}
		} catch (Exception e) {
			throw new RuntimeException(e);
		}
	}

}


分词器

分词器的作用
在创建索引时会用到分词器,在使用字符串搜索时也会用到分词器,这两个地方要使用同一个分词器,否则可能会搜索不出结果。
Analyzer(分词器)的作用是把一段文本中的词按规则取出所包含的所有词。对应的是Analyzer类,这是一个抽象类,切分词的具体规则是由子类实现的,所以对于不同的语言(规则),要用不同的分词器

英文)分词器的一般工作流程:
1, 切分关键词
2, 去除停用词
3,对于英文单词,把所有字母转为小写(搜索时不区分大小写)

停用词:
有些词在文本中出现的频率非常高,但是对文本所携带的信息基本不产生影响,例如英文的“a、an、the、of”,或中文的“的、了、着”,以及各种标点符号等,这样的词称为停用词(stop word)。文本经过分词之后,停用词通常被过滤掉,不会被进行索引。在检索的时候,用户的查询中如果含有停用词,检索系统也会将其过滤掉(因为用户输入的查询字符串也要进行分词处理)。排除停用词可以加快建立索引的速度,减小索引库文件的大小。

自带标准的分词器其核心类为StandardAnalyzer
另外还有单字分词 ChineseAnalyzer
二分法分词 CJKAnalyzer
还有第三方的分词器如IKAnalyzer

中文分词器使用IKAnalyzer,主页:http://www.oschina.net/p/ikanalyzer。
实现了以词典为基础的正反向全切分,以及正反向最大匹配切分两种方法。IKAnalyzer是第三方实现的分词器,继承自Lucene的Analyzer类,针对中文文本进行处理。具体的使用方式参见其文档。

代码示例:

package com.my.lucene;

import java.io.StringReader;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.cjk.CJKAnalyzer;
import org.apache.lucene.analysis.cn.ChineseAnalyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.analysis.tokenattributes.TermAttribute;
import org.apache.lucene.util.Version;
import org.junit.Test;
import org.wltea.analyzer.lucene.IKAnalyzer;

public class AnalyzerTest {

	@Test
	public void test() throws Exception{
		// 英文分词
		String text = "An IndexWriter creates and maintains an index.";
		Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
		testAnalyzer(analyzer, text);
		
		// 中文分词
		String text2 = "传智播客的Lucene是全文检索的框架";
		testAnalyzer(new ChineseAnalyzer(), text2); // 单字分词
		testAnalyzer(new CJKAnalyzer(Version.LUCENE_30), text2); // 二分法分词
		testAnalyzer(new IKAnalyzer(), text2); // 词库分词
		testAnalyzer(new IKAnalyzer(), text); // 词库分词
	}

	/**
	 * 使用指定的分词器对指定的文本进行分词,并打印出分出的词
	 * 
	 * @param analyzer
	 * @param text
	 * @throws Exception
	 */
	private void testAnalyzer(Analyzer analyzer, String text) throws Exception {
		System.out.println("当前使用的分词器:" + analyzer.getClass());
		TokenStream tokenStream = analyzer.tokenStream("content", new StringReader(text));
		tokenStream.addAttribute(TermAttribute.class);
		while (tokenStream.incrementToken()) {
			TermAttribute termAttribute = tokenStream.getAttribute(TermAttribute.class);
			System.out.println(termAttribute.term());
		}
		System.out.println();
	}

}


分词器配置文件
IKAnalyzer.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">  
<properties>  
	<comment>IK Analyzer 扩展配置</comment>
	<!--用户可以在这里配置自己的扩展字典--> 
	<entry key="ext_dict">/mydict.dic</entry> 
	 
	 <!--用户可以在这里配置自己的扩展停止词字典-->
	<entry key="ext_stopwords">/ext_stopword.dic</entry> 
	
</properties>

mydict.dic

全文检索

ext_stopword.dic

就
并
很
或
把
是
的
着
给
而
被
让
在
还
比
等
当
与
于
但

注意:查询必须使用与建立索引库相同的分词器。


排序

通过改变文档Boost值来改变排序结果。Boost是指索引建立过程中,给整篇文档或者文档的某一特定属性设定的权值因子,在检索时,优先返回分数高的。通过Document对象的setBoost()方法和Field对象的setBoost()方法,可以分别为Document和Field指定Boost参数。不同在于前者对文档中每一个域都修改了参数,而后者只针对指定域进行修改。默认情值为1F,一般不做修改。

使用Sort对象定制排序。Sort支持的排序功能以文档当中的域为单位,通过这种方法,可以实现一个或者多个不同域的多形式的值排序。时间类型的属性采用STRING常量。

按相关度排序
1,相关度得分是在查询时根据查询条件实进计算出来的
2,如果索引库据不变,查询条件不变,查出的文档得分也不变

按指定的字段排序
利用Field.Index.NOT_ANALYZED.

代码示例:

package com.my.lucene;

import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.document.Document;
import org.apache.lucene.queryParser.MultiFieldQueryParser;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.Sort;
import org.apache.lucene.search.SortField;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.util.Version;
import org.junit.Test;

import com.my.bean.Article;
import com.my.utils.ArticleDocumentUtils;
import com.my.utils.Configuration;
import com.my.utils.LuceneUtils;

public class SortTest {
	
	@Test
	public void createIndex() throws Exception {
		// 模拟一条刚保存到数据库中的数据
		Article article = new Article();
		article.setId(31);
		article.setTitle("Lucene是全文检索的框架");
		article.setContent("如果信息检索系统在用户发出了检索请求后再去互联网上找答案,根本无法在有限的时间内返回用户。");
		// 建立索引
		Document doc = ArticleDocumentUtils.article2Document(article);
		doc.setBoost(0.5F); // 使用boost影响相关度得分,默认值为1F
		LuceneUtils.getIndexWriter().addDocument(doc);
	}

	@Test
	public void search1() throws Exception {
		// 搜索条件
		String queryString = "用户";
		// 1,把查询字符串转为Query对象
		QueryParser queryParser = new MultiFieldQueryParser(Version.LUCENE_30, new String[] { "title", "content" }, Configuration.getAnalyzer()); // 在title与content中查询
		Query query = queryParser.parse(queryString);

		// 2,查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		// 3,处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			System.out.println(scoreDocs[i].score); // 相关度得分

			// 根据编号取出真正的Document数据
			Document doc = indexSearcher.doc(scoreDocs[i].doc);
			// 把Document转成Article
			Article article = ArticleDocumentUtils.document2Article(doc);
			list.add(article);
		}

		indexSearcher.close();

		// 显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}
	
	@Test
	public void search2() throws Exception {
		// 搜索条件
		String queryString = "用户";

		// 进行搜索,得到结果 ?
		// 1,把查询字符串转为Query对象
		QueryParser queryParser = new MultiFieldQueryParser(Version.LUCENE_30, new String[] { "title", "content" }, Configuration.getAnalyzer()); // 在title与content中查询
		Query query = queryParser.parse(queryString);

		// 2,查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		// TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		// ====================================================================
		// indexSearcher.search(query, n);
		// indexSearcher.search(query, filter, n);
		// indexSearcher.search(query, filter, n, sort);
		// 指定排序的字段
		Sort sort = new Sort(new SortField("id", SortField.INT)); // 按id升序排列
		// Sort sort = new Sort(new SortField("id", SortField.INT, true)); // 按id降序排列
		TopDocs topDocs = indexSearcher.search(query, null, 100, sort);
		// ====================================================================
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		// 3,处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			System.out.println(scoreDocs[i].score); // 相关度得分

			// 根据编号取出真正的Document数据
			Document doc = indexSearcher.doc(scoreDocs[i].doc);
			// 把Document转成Article
			Article article = ArticleDocumentUtils.document2Article(doc);
			list.add(article);
		}

		indexSearcher.close();

		// 显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}
	

}


过滤
使用Filter 可以对搜索结果进行过滤以获得更小范围的结果。使用Filter对性能的影响很大(有可能会使查询慢上百倍)。

代码示例:

package com.my.lucene;

import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.document.Document;
import org.apache.lucene.queryParser.MultiFieldQueryParser;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.Filter;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.NumericRangeFilter;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.util.Version;
import org.junit.Test;

import com.my.bean.Article;
import com.my.utils.ArticleDocumentUtils;
import com.my.utils.Configuration;

public class FilterTest {
	
	@Test
	public void search() throws Exception {
		// 搜索条件
		String queryString = "用户";

		// 1,把查询字符串转为Query对象
		QueryParser queryParser = new MultiFieldQueryParser(Version.LUCENE_30, new String[] { "title", "content" }, Configuration.getAnalyzer()); // 在title与content中查询
		Query query = queryParser.parse(queryString);

		// 2,查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		// TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		// indexSearcher.search(query, n);
		// indexSearcher.search(query, filter, n);
		// indexSearcher.search(query, filter, n, sort);
		// 指定过滤的条件
		Filter filter = NumericRangeFilter.newIntRange("id", 1, 15, true, true);
		TopDocs topDocs = indexSearcher.search(query, filter, 100);
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		// 3,处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			System.out.println(scoreDocs[i].score); // 相关度得分

			// 根据编号取出真正的Document数据
			Document doc = indexSearcher.doc(scoreDocs[i].doc);
			// 把Document转成Article
			Article article = ArticleDocumentUtils.document2Article(doc);
			list.add(article);
		}

		indexSearcher.close();

		// 显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}

}


高亮

高亮的核心类为
org.apache.lucene.search.highlight.Formatter
org.apache.lucene.search.highlight.Highlighter
org.apache.lucene.search.highlight.Scorer

代码示例:

package com.my.lucene;

import java.util.ArrayList;
import java.util.List;

import org.apache.lucene.document.Document;
import org.apache.lucene.queryParser.MultiFieldQueryParser;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.highlight.Formatter;
import org.apache.lucene.search.highlight.Highlighter;
import org.apache.lucene.search.highlight.QueryScorer;
import org.apache.lucene.search.highlight.Scorer;
import org.apache.lucene.search.highlight.SimpleFragmenter;
import org.apache.lucene.search.highlight.SimpleHTMLFormatter;
import org.apache.lucene.util.Version;
import org.junit.Test;

import com.my.bean.Article;
import com.my.utils.ArticleDocumentUtils;
import com.my.utils.Configuration;

public class HighlighterTest {
	
	@Test
	public void search() throws Exception {
		// 搜索条件
		String queryString = "用户";

		// 1,把查询字符串转为Query对象
		QueryParser queryParser = new MultiFieldQueryParser(Version.LUCENE_30, new String[] { "title", "content" }, Configuration.getAnalyzer()); // 在title与content中查询
		Query query = queryParser.parse(queryString);

		// 2,查询,得到中间结果
		IndexSearcher indexSearcher = new IndexSearcher(Configuration.getDirectory());
		TopDocs topDocs = indexSearcher.search(query, 100); // 按指定条件条询,只返回前n条结束
		ScoreDoc[] scoreDocs = topDocs.scoreDocs; // 前n条结果的信息

		// 创建并配置高亮器(前缀、后缀、摘要大小)
		Formatter formatter = new SimpleHTMLFormatter("<font color='red'>", "</font>"); // 指定前缀与后缀,默认使用<b>与</b>
		Scorer scorer = new QueryScorer(query);
		Highlighter highlighter = new Highlighter(formatter, scorer);
		highlighter.setTextFragmenter(new SimpleFragmenter(20)); // 指定摘要大小,默认是100个字符

		// 3,处理结果
		List<Article> list = new ArrayList<Article>();
		for (int i = 0; i < scoreDocs.length; i++) {
			// 根据编号取出真正的Document数据
			Document doc = indexSearcher.doc(scoreDocs[i].doc);

			// 进行高亮操作,一次只能高亮一个字段的值,返回高亮后的文本(一段摘要),如果当前高亮的属性值中没有出现要搜索的关键字,则返回null
			String text = highlighter.getBestFragment(Configuration.getAnalyzer(), "content", doc.get("content"));
			if (text != null) {
				doc.getField("content").setValue(text); // 使用高亮后的文本替换原始内容
			}

			// 把Document转成Article
			Article article = ArticleDocumentUtils.document2Article(doc);
			list.add(article);
		}

		indexSearcher.close();

		// 显示结果
		System.out.println("总结果数量为:" + list.size());
		for (Article article : list) {
			System.out.println("--------> id = " + article.getId());
			System.out.println("title  = " + article.getTitle());
			System.out.println("content= " + article.getContent());
		}
	}

}

Coding Diary

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值