Top-1错误率和Top-5错误率

本文深入解析了图像识别领域的Top-1与Top-5错误率概念,阐述了模型预测准确性的衡量标准,对于理解深度学习模型性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Top-5错误率

一个图片经过网络,得到预测类别的概率,如果概率前五(top-5)中包含正确答案,即认为正确。top-5错误率就是Top-5 = (正确标记 不在 模型输出的前5个最佳标记中的样本数)/ 总样本数。

Top-1错误率

一个图片,如果概率最大的是正确答案,才认为正确。Top-1 = (正确标记 不是 模型输出的最佳标记的样本数)/ 总样本数。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值