
数据挖掘与大数据算法
文章平均质量分 84
主要涉及到数据结构、算法设计、工业界数据科学基础算法等。
华师数据学院·王嘉宁
研究方向:深度学习、自然语言处理、知识图谱。
研究兴趣:大语言模型训练与推理、知识增强预训练、Prompt-tuning、小样本学习、问答系统、信息抽取。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【推荐系统】协同过滤算法
协同过滤算法推荐系统构建三大方法:基于内容的推荐content-based,协同过滤collaborative filtering,隐语义模型(LFM, latent factor model)推荐。这篇博客主要讲协同过滤。——《推荐系统:协同过滤collaborative filtering》协同过滤(CF, Collaborative Filtering)的主要思想是:利用已有的用户群过去的行为或者意见预测当前用户最可能喜欢哪些东西或者对哪些东西感兴趣。主要应用场景是在线零售系统,目的是进行原创 2021-02-24 14:50:43 · 1050 阅读 · 0 评论 -
2020第十七届华为杯数模C题——P300脑电信号数据预处理算法
脑电信号数据预处理 这两天的数学建模选的C题,目标是要处理脑电P300信号的数据并进行相关预测任务。该题重点是数据预处理,因此根据最后实验的结果,分享相关的预处理方法以及源代码。长话短说,给出任务的简单描述、分析方法以及相关源代码。关于2020年第十七届华为杯研究生数学建模所有赛题可前往: (https://pan.baidu.com/s/19O9J_0tnWumMe47zqk3jMg ,提取码:xx3j),赛题解压码为 任务描述:脑机接口是通过计算机检测人脑活动的系统,其通过对人体大脑各个通道检测原创 2020-09-21 14:50:26 · 7320 阅读 · 28 评论 -
k近邻算法
k近邻算法 k近邻算法是一个基本的分类回归方法,其没有显式的学习过程,而是完全取决于数据,因此k近邻是基于数据的学习算法,其只有唯一的一个参数 k(k>0,k∈N+)k(k>0,k\in\mathbb{N}_+)k(k>0,k∈N+) 。1、k近邻算法 给定一组已知数据 T={(xi,yi)}i=1i=NT=\{(x_i,y_i)\}_{i=1}^{i=N}T={(xi,yi)}i=1i=N,其中 xix_ixi 表示样本的特征向量,yiy_iyi 是对应的标签。通原创 2020-08-15 15:40:58 · 441 阅读 · 0 评论 -
基于PCA的图像压缩实现
基于PCA的图像压缩实现注:该内容为校内课程实验,仅供参考,请勿抄袭!源码:PPCA-for-Image-Compession摘要 随着计算机互联网的发展和数据的日益增长,如何高效的处理和传输海量数据成为大数据处理的瓶颈问题,尤其对于图像类数据,通常其占有空间大,包含信息量丰富,如何对图像数据进行压缩吸引广大研究者们的注意。本文通过调研PCA图像压缩的相关工作,认为当前方法依赖于整个数据集,压缩效率低、占据内存量大的问题,本文提出一种分片PCA(P-PCA)图像压缩算法,旨在通过对图像进行分片,并原创 2020-08-02 17:50:10 · 5028 阅读 · 2 评论 -
关联规则常用算法
关联规则常用算法 关联规则(Association Rules)是海量数据挖掘(Mining Massive Datasets,MMDs)非常经典的任务,其主要目标是试图从一系列事务集中挖掘出频繁项以及对应的关联规则。关联规则来自于一个家喻户晓的“啤酒与尿布”的故事,本文通过故事来引出关联规则的方法。啤酒与尿布的故事 在一家超市里,有一个有趣的现象:尿布和啤酒赫然摆在一起出售。但是这个奇怪的举措却使尿布和啤酒的销量双双增加了。这不是一个笑话,而是发生在美国沃尔玛连锁店超市的真实案例,并一直为商家原创 2020-07-03 15:53:41 · 40819 阅读 · 4 评论 -
[PPT]一种在多核环境下用于大规模线性分类的并行对偶坐标下降法
一种在多核环境下用于大规模线性分类的并行对偶坐标下降法 课程需要完成阅读一篇文章,因此挑选本篇论文作为讲解,论文名称为《Parallel Dual Coordinate Descent Method for Large-scale Linear Classification in Multi-core Environments》,下载地址:https://www.csie.ntu.edu.tw/~cjlin/papers/multicore_cddual.pdf在这里插入原创 2020-06-15 17:56:54 · 257 阅读 · 0 评论