
Few-shot NER
文章平均质量分 95
介绍基于小样本学习的命名实体识别相关进展
华师数据学院·王嘉宁
研究方向:深度学习、自然语言处理、知识图谱。
研究兴趣:大语言模型训练与推理、知识增强预训练、Prompt-tuning、小样本学习、问答系统、信息抽取。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
论文解读:Few-shot Slot Tagging with Collapsed Dependency Transfer and Label-enhanced Task-adaptive Proje
小样本实体识别(Few-shot NER)旨在给定目标domain非常少的标注数据(例如符合 N-way K-shot 规则的support set)的前提下,能够识别出文本中指定类型的所有实体。而通常实体识别是视为一种序列标注(sequence labeling)任务。目前与实体识别相似的任务还有槽位填充(Slot Tagging)。本文介绍ACL2020的一篇工作试图解决基于Few-shot的序列标注问题。...原创 2022-06-29 19:52:06 · 1413 阅读 · 0 评论 -
论文解读:Example-Based Named Entity Recognition
Example-based NER指给定support set少量的样本,对应的所有entity type只有很少的实体。给定一个query时,模型会分别根据support set中的entity type寻找query对应的实体。原创 2022-06-28 16:34:43 · 991 阅读 · 0 评论 -
【小样本实体识别】Few-NERD——基于N-way K-shot的实体识别数据集和方法介绍
介绍Few-NERD数据集,以及基于N-way K-shot的实体识别任务定义。对核心代码进行展示,并介绍目前的研究进展和baseline对比实验。原创 2022-06-28 15:42:38 · 3958 阅读 · 0 评论