视网膜数据集(3)STARE

    STARE数据集 是 1975 年由 Michael Goldbaum 发起的项目, 它在 2000 年由 Hoover 等首次在论文中引用并公开,是用来进行视网膜血管分割的彩色眼底图数据库, 包括 20 幅眼底图像, 其中 10 幅有病变, 10 幅没有病变, 图像分辨率为 605×700, 每幅图像对应 2 个专家手动分割的结果, 是最常用的眼底图标准库之一.。但是其自身的数据库中没有掩膜,需要自己手动设置掩膜。目前它已扩展到 40 幅血管分割手工标注结果和 80 幅视神经检测手工标注结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

STARE Dataset 获取添加QQ :1056593553

### STARE 数据集介绍 STARE 数据集是由 Michael Goldbaum 发起的一个项目,在 2000 年由 Hoover 等首次在论文中引用并公开。该数据集主要用于视网膜血管分割的研究,是一个重要的彩色眼底图数据库[^3]。 #### 数据集特点 - **图像数量**: 初始版本包含 20 幅眼底图像,其中 10 幅有病变,10 幅没有病变。 - **分辨率**: 每张图像的分辨率为 605×700 像素。 - **标注情况**: 每幅图像配有两位专家的手动分割结果。 - **扩展内容**: 后续更新增加了更多标注,现在共有 40 幅血管分割手工标注结果和 80 幢视神经检测手工标注结果。 由于原始数据集中未提供掩膜信息,研究者通常需要自行创建这些掩膜来辅助分析工作。 ### 使用方法 为了有效利用 STARE 数据集进行科研活动,建议遵循以下指南: #### 准备环境 确保安装必要的软件工具包用于处理医学影像数据。Python 中常用的库包括 OpenCV 和 PIL (Pillow),可以方便地读取、显示以及预处理图片文件。 ```python import cv2 from PIL import Image ``` #### 加载与查看样本 通过编程手段加载单个或多个图像实例,并初步观察其特性。 ```python image_path = 'path_to_stare_dataset/IM0001.ppm' img_array = cv2.imread(image_path) plt.imshow(img_array) plt.show() ``` #### 预处理步骤 针对特定应用场景执行相应的前处理操作,比如调整大小、增强对比度或者去除噪声等。 ```python def preprocess_image(image): resized_img = cv2.resize(image, dsize=(desired_width, desired_height)) gray_scale_img = cv2.cvtColor(resized_img, cv2.COLOR_BGR2GRAY) return gray_scale_img ``` #### 应用场景示例 基于此数据集开展诸如疾病诊断模型训练等工作时,可采用深度学习框架 TensorFlow 或 PyTorch 构建卷积神经网络(CNN)架构来进行特征提取及分类预测任务。 ```python model = tf.keras.models.Sequential([ ... ]) history = model.fit(train_images, train_labels, epochs=epochs_num) ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值