多模态融合技术综述和应用

本文介绍了多模态融合技术,包括联合架构、协同架构和编解码架构,以及早期融合、晚期融合和混合融合方法。多模态技术通过融合不同模态信息,如文本、图像、语音,提升模型性能。在模态对齐方面,探讨了显式对齐和隐式对齐方法。此外,多模态摘要作为应用案例,展示了如何综合多模态信息生成内容摘要,如教学型视频、新闻、会议摘要等。多模态技术的发展有助于实现更全面、高效的信息理解,是人工智能领域的重要研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多模态技术基础

参考论文:https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.19678/j.issn.1000-3428.0057370
参考文章:https://zhuanlan.zhihu.com/p/133990245

深度学习多模态融合指机器从文本、图像、语音、视频等多个领域获取信息,实现信息转换和融合,从而提升模型性能的技术,是一个典型的多学科交叉领域。人们生活在一个多领域相互交融的环境中,听到的声音、看到的实物、闻到的味道等都是各领域的模态形式,为了使深度学习算法更加全面和高效地了解周围的世界,需要给机器赋予学习和融合这些多领域信号的能力。因此,研究者们开始关注如何将来自多领域的数据进行融合,以实现多种异质信息的互补。例如,对语音识别的研究表明,视觉模态提供了嘴的唇部运动和发音的信息,包括张开和关闭,从而有助于提高语音识别性能。因此,利用多种模式提供的综合语义对深度学习非常有价值。
在机器学习中,我们已经知道模型学习的特征越多,种类越多效果越好。所以融合多模态的特征可以使得模型学到的特征越完整,也是符合人类进化的表现,人类在多种行动与决策都会综合多个模态信息,比如视觉、听觉、嗅觉等。
多模态技术主要要素:表示(Representation),融合(Fusion)、转换(Translation)、对齐(Alignment)。由于不同模态的特征向量最初位于不同子空间中,即异质性差距,这将阻碍多模态数据在随后的深度学习模型中综合利用[3]。解决这一问题可将异构特征投影到公共子空间,其中具有相似语义的多模态数据将由相似向量表示。多模态融合技术的主要目标是缩小语义子空间中的分布差距,同时保持模态特定语义的完整性。

1,多模态融合架构(神经网络模型的基本结构形式)

多模态融合的主要目标是缩小模态间的异质性差异,同时保持各模态特定语义的完整性,并在深度学习模型中取得最优的性能。分为三类联合(Joint)架构、协作(Coordinated)架构和编解码(Encode-Decode)架构。三种融合架构在视频分类、情感分析、语音识别等许多领域得到广泛应用,且涉及图像、视频、语音、文本等融合内容,具体应用情况如下表 所示。
在这里插入图片描述

1.1联合架构

联合架构是将单模态表示投影到一个共享语义子空间中,以便能够融合多模态特征。如下图所示,**每个单一模态通过一个单独的编码后,都将被映射到一个共享子空间中,**遵循这一策略,在视频分类[12]、事件检测[7]、情绪分析[13,14]、视觉问答[15,16]和语音识别[18]等多模态分类或回归任务中都表现出较优的性能。
在这里插入图片描述
多模态联合架构的关键是实现特征“联合”,最简单方法是直接连接,即“加”联合方法。该方法在不同的隐藏层实现共享语义子空间,将转换后的各个单模态特征向量语义组合在一起,从而实现多模态融合,如公式 z = f ( w 1 T v 1 + . . . + w n T v n ) z=f(w_1^Tv_1+...+w_n^Tv_n) z=f(w1Tv1+...+w

### 多模态融合中的早期融合与晚期融合结合 在多模态学习领域,混合融合方法通过结合早期融合晚期融合的优势来提升性能。具体来说,在处理图像文本等不同类型的输入时,可以在特征提取阶段采用早期融合策略,而在最终决策阶段则应用晚期融合。 #### 特征层面的早期融合 对于来自多个源的数据,如视觉信号音频流,可以通过拼接或加权求等方式将各自的特征向量组合在一起形成联合表征[^1]。这种做法允许模型在同一空间内同时捕捉跨模式间的关联性以及各自内部的关系结构。 ```python import numpy as np def early_fusion(features_image, features_audio): # 假设features_image features_audio 是两个numpy数组形式的特征矩阵 combined_features = np.concatenate((features_image, features_audio), axis=1) return combined_features ``` #### 决策级别的晚期融合 当各个独立的工作流程已经产生了初步结论之后,则可采取投票机制、平均概率分布或其他更复杂的方案来进行综合评判。例如,在一个多标签分类任务中,如果存在两种不同的网络分别针对图片内容给出预测结果,那么就可以取两者输出置信度得分的最大值作为最终判定依据。 ```python from scipy.stats import mode def late_fusion(predictions_model_1, predictions_model_2): # 对于离散型类别标签可以直接计算众数;如果是连续数值的话也可以选择其他聚合方式比如均值 final_predictions = mode([predictions_model_1, predictions_model_2], axis=0)[0].flatten() return final_predictions ``` #### 实际案例分析——自动驾驶环境感知系统 在一个典型的无人驾驶汽车场景下,为了提高目标检测精度并增强鲁棒性,通常会集成摄像头拍摄的画面信息同雷达回波数据一起送入深度神经网络架构之中进行协同工作。一方面利用卷积操作从像素级细节里挖掘物体轮廓线索;另一方面借助距离测量优势弥补光学成像可能存在的遮挡缺失情况。在此基础上再经过一系列变换映射至统一坐标系后实施后续运算逻辑直至得出确切位置姿态参数估计值为止[^2]。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值