vs2017 开始自己的第一个深度学习例子——MNIST分类(基于TensorFlow框架)

本文详述了在Visual Studio 2017中使用TensorFlow搭建MNIST手写数字分类模型的过程,从项目创建到代码实现,再到结果分析,深入浅出地介绍了如何利用深度学习技术进行图像分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是针对于博客vs2017安装和使用教程(详细)的深度学习例子——MNIST分类项目新建示例


目录

一、新建项目

二、运行代码

三、生成结果


一、新建项目

1.项目创建参照博主文章:vs2017 开始自己的第一个Python程序

2.输入代码:


# -*- coding: utf-8 -*-
#获得数据集
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

import tensorflow as tf

#输入图像数据占位符
x = tf.placeholder(tf.float32, [None, 784])

#权值和偏差
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))

#使用softmax模型
y = tf.nn.softmax(tf.matmul(x, W) + b)

#代价函数占位符
y_ = tf.placeholder(tf.float32, [None, 10])

#交叉熵评估代价
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

#使用梯度下降算法优化:学习速率为0.5
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

#Session
sess = tf.InteractiveSession()

#初始化变量
tf.global_variables_initializer().run()

#训练模型,训练1000次
for _ in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

#计算正确率
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
print("Training data:",mnist.train.num_examples)
print("Validating data size:",mnist.validation.num_examples)

效果如图:

二、运行代码

1.点击附加...运行程序,这个过程会很耗时

                                                                                        

2.运行过程中会下载生成文件夹,生成的数据在MNIST_data文件夹下,我们不需要手动解压

3.之后程序开始运行参数设置,具体的各个参数意义和用法在这里不赘述

三、生成结果

最后生成结果如下:

可以看到这次运行的准确率为91.73%,一般每次执行的结果都会不同,如果想提高精度可进行调参操作,这里不再赘述~

返回至原博客:vs2017安装和使用教程(详细)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值