RCAN 论文笔记

RCAN论文详细介绍了使用非常深的残差通道注意力网络进行图像超分辨率的解决方案。网络结构包括浅层特征提取、RIR结构、通道注意力机制和残差通道注意力模块。实验表明,RCAN在图像恢复质量上表现出优越性,特别是在处理高频信息方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

使用非常深的残差通道注意力网络的图像超分辨率


项目地址:https://github.com/yulunzhang/RCAN


目录

一、提出CNN的不足

二、解决的方法

三、RCAN(残差通道注意网络)

四、损失函数

五、RIR(残差中套残差)

六、CA(通道注意力)

七、RCAB(残差通道注意力模块)

八、实验结果

九、总结


一、提出CNN的不足

1.更深的网络更难以训练

2.CNN的表示能力不高,其原因是由于低分辨率输入和特征中的低频信息在同道上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值