【论文精读】GMS: Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence

GMS是一种基于网格的运动统计方法,旨在为特征匹配提供快速、高度鲁棒的解决方案。该方法通过统计相邻特征匹配的数量来区分正确和错误的匹配,适用于视频应用。GMS简化了平滑限制,将其转化为区域内的统计可能性,从而提高匹配质量,尤其在处理视频、低纹理、模糊和宽基线场景时表现优秀。相比于现有技术,GMS在保持实时性能的同时,提高了匹配精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值