【图像去噪】论文精读:Learning Deep CNN Denoiser Prior for Image Restoration(IRCNN)

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)


前言

论文题目:Learning Deep CNN Denoiser Prior for Image Restoration —— 学习深度CNN降噪先验用于图像重建

论文地址:Learning Deep CNN Denoiser Prior for Image Restoration

论文源码:https://github.com/cszn/ircnn

CVPR 2017!

Abstract

基于模型的优化方法和判别学习方法是解决低级视觉中各种逆问题的两个主要策略。通常,这两种方法各有优缺点,例如基于模型的优化方法可以灵活地处理不同的逆问题,但通常需要复杂的先验才能获得良好的性能;同时,判别学习方法测试速度快,但其应用范围受到专业任务的限制很大。最近的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值