QT 新增类,引用后报错:外部符合LINK2019

本文介绍了解决QT与VS开发环境下遇到的编译问题的方法:通过删除已编译的文件并重新进行编译来解决。这可能是由于开发环境配置不当导致的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

将 built出来的文件删除掉,然后重新编译就可以了。估计是跟qt+vs开发环境有关。



// 在调试OCR时,崩溃了这里:error_code ORT_INVALID_ARGUMENT (2) OrtErrorCode D:\wzl\project\wzl_qt_work\third_party\onnxruntime-win-x64-1.22.0\include\onnxruntime_cxx_inline.h auto outs = cls_session_->Run(Ort::RunOptions{ nullptr }, &inName, &tensor, 1, &outName, 1); namespace detail { inline void ThrowStatus(const Status& st) { std::string error_message = st.GetErrorMessage(); OrtErrorCode error_code = st.GetErrorCode(); ORT_CXX_API_THROW(std::move(error_message), error_code); } } // namespace detail 堆栈: 3 Ort::detail::ThrowStatus onnxruntime_cxx_inline.h 39 0x7ff7d0958e31 4 Ort::ThrowOnError onnxruntime_cxx_inline.h 46 0x7ff7d0958d72 5 Ort::detail::SessionImpl<OrtSession>::Run onnxruntime_cxx_inline.h 1433 0x7ff7d0958c37 6 Ort::detail::SessionImpl<OrtSession>::Run onnxruntime_cxx_inline.h 1424 0x7ff7d0958b05 7 OcrService::needRotate OcrService.cpp 219 0x7ff7d0946e7b 8 OcrService::performOcr OcrService.cpp 58 0x7ff7d0944f34 9 Test::Test Test.cpp 45 0x7ff7d093fef4 10 main main.cpp 101 0x7ff7d093278f 11 qtEntryPoint qtentrypoint_win.cpp 45 0x7ff7d097d49a 12 WinMain qtentrypoint_win.cpp 64 0x7ff7d097d34e 控制台打印信息: det output shape: 1 1 640 640 probMap min/max: 0 1 contours found: 39 // D:\wzl\project\wzl_qt_work\src\cpp\ocr\OcrService.cpp #include "OcrService.h" #include <stdexcept> #include <filesystem> OcrService::OcrService(QString& model_dir_str) : env_(ORT_LOGGING_LEVEL_WARNING, "OcrService") { try { session_options_.SetIntraOpNumThreads(1); session_options_.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED); const std::filesystem::path model_dir(model_dir_str.toStdWString()); const auto det_path = model_dir / "det/det.onnx"; const auto cls_path = model_dir / "cls/cls.onnx"; const auto rec_path = model_dir / "rec/rec.onnx"; // 使用智能指针管理 Session 生命周期 det_session_ = std::make_unique<Ort::Session>(env_, det_path.c_str(), session_options_); cls_session_ = std::make_unique<Ort::Session>(env_, cls_path.c_str(), session_options_); rec_session_ = std::make_unique<Ort::Session>(env_, rec_path.c_str(), session_options_); is_initialized_ = true; } catch (const Ort::Exception& e) { // 加载失败时抛出异常,方便上层捕获和处理 throw std::runtime_error("Failed to initialize OCR service: " + std::string(e.what())); } } // =============================================== // 外部统一入口 // =============================================== QVector<QString> OcrService::performOcr(const cv::Mat& image) { QVector<QString> results; if (!is_initialized_ || image.empty()) return results; // 1. 检测文本框 QList<TextBox> boxes = detectTextBoxes(image); // 2. 逐框识别 for (const TextBox& box : boxes) { // 裁剪并透视矫正 cv::Mat M, warped; std::vector<cv::Point2f> dstPts = { { 0.f, 0.f }, { float(box.pts[1].x() - box.pts[0].x()), 0.f }, { float(box.pts[1].x() - box.pts[0].x()), float(box.pts[2].y() - box.pts[1].y()) }, { 0.f, float(box.pts[2].y() - box.pts[1].y()) } }; cv::warpPerspective(image, warped, cv::getPerspectiveTransform(reinterpret_cast<const cv::Point2f*>(box.pts.data()), reinterpret_cast<const cv::Point2f*>(dstPts.data())), cv::Size(int(dstPts[1].x), int(dstPts[2].y)), cv::INTER_LINEAR, cv::BORDER_REPLICATE); // 3. 方向判断 if (needRotate(warped)) cv::rotate(warped, warped, cv::ROTATE_180); // 4. 识别 results.append(recognizeText(warped)); } return results; } // =============================================== // 1. DBNet 后处理 // =============================================== static QVector<std::array<int64_t, 4>> makeShape4(int n, int c, int h, int w) { return { { static_cast<int64_t>(n), static_cast<int64_t>(c), static_cast<int64_t>(h), static_cast<int64_t>(w) } }; } QList<TextBox> OcrService::detectTextBoxes(const cv::Mat& image, float det_thresh /* =0.1 */, float box_thresh /* =0.3 */, float unclip_ratio /* =2.0 */) { QList<TextBox> finalBoxes; // ---------- 1. 前处理:resize(640x640) + RGB + float32 ---------- const int detH = 640, detW = 640; cv::Mat rgb, resized; cv::cvtColor(image, rgb, cv::COLOR_BGR2RGB); cv::resize(rgb, resized, cv::Size(detW, detH)); resized.convertTo(resized, CV_32FC3, 1.0 / 255.0f); // 0‑1 归一化 // ---------- (新) 按 mean/std 归一化 + HWC→CHW ---------- static const float mean_vals[3] = { 0.485f, 0.456f, 0.406f }; static const float std_vals[3] = { 0.229f, 0.224f, 0.225f }; QVector<float> inputData(3 * detH * detW); for (int y = 0; y < detH; ++y) for (int x = 0; x < detW; ++x) { cv::Vec3f pix = resized.at<cv::Vec3f>(y, x); // RGB int idx = y * detW + x; inputData[0 * detH * detW + idx] = (pix[0] - mean_vals[0]) / std_vals[0]; // R inputData[1 * detH * detW + idx] = (pix[1] - mean_vals[1]) / std_vals[1]; // G inputData[2 * detH * detW + idx] = (pix[2] - mean_vals[2]) / std_vals[2]; // B } // ---------- 2. 构建 ONNX Runtime 输入 ---------- Ort::MemoryInfo memInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); auto inputTensor = Ort::Value::CreateTensor<float>( memInfo, inputData.data(), inputData.size(), makeShape4(1, 3, detH, detW)[0].data(), 4); // ---------- 3. 推理 ---------- Ort::AllocatorWithDefaultOptions allocator; const char* inName = det_session_->GetInputNameAllocated(0, allocator).get(); const char* outName = det_session_->GetOutputNameAllocated(0, allocator).get(); auto outs = det_session_->Run(Ort::RunOptions{ nullptr }, &inName, &inputTensor, 1, &outName, 1); // ---------- 4. 输出处理:阈值化→膨胀→找轮廓 ---------- Ort::Value& pred = outs[0]; auto shape = pred.GetTensorTypeAndShapeInfo().GetShape(); // 期望 [1,1,H,W] qDebug() << "det output shape:" << shape[0] << shape[1] << shape[2] << shape[3]; const int outH = static_cast<int>(shape[2]); const int outW = static_cast<int>(shape[3]); QVector<float> prob(outH * outW); std::memcpy(prob.data(), pred.GetTensorMutableData<float>(), prob.size() * sizeof(float)); cv::Mat probMap(outH, outW, CV_32F, prob.data()); #if 1 // 调试代码,如果发现 cv::threshold() 前 probMap 的最大值 maxVal = 2.97e-05,说明 模型输出几乎是全零, // 所以经过 cv::threshold(probMap, binary, det_thresh, 255, ...) 后 binary 几乎全是黑图(值为0), // cv::findContours() 找不到任何轮廓,contours 自然为空。 // det 模型输出的 probMap 全接近 0,这通常是 预处理不对或模型有问题。 double minVal, maxVal; cv::minMaxLoc(probMap, &minVal, &maxVal); qDebug() << "probMap min/max:" << minVal << maxVal; #endif cv::Mat binary; cv::threshold(probMap, binary, det_thresh, 255, cv::THRESH_BINARY); binary.convertTo(binary, CV_8U); cv::Mat dilated; cv::dilate(binary, dilated, cv::getStructuringElement(cv::MORPH_RECT, { 3, 3 }), // 小核膨胀一次 cv::Point(-1, -1), 1); std::vector<std::vector<cv::Point>> contours; cv::findContours(dilated, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE); qDebug() << "contours found:" << contours.size(); // ---------- 5. 轮廓转为 TextBox ---------- for (const auto& contour : contours) { if (contour.size() < 4) continue; cv::Mat mask = cv::Mat::zeros(probMap.size(), CV_8U); cv::drawContours(mask, std::vector<std::vector<cv::Point>>{ contour }, 0, cv::Scalar(255), -1); float score = static_cast<float>(cv::mean(probMap, mask)[0]); if (score < box_thresh) continue; cv::RotatedRect rect = cv::minAreaRect(contour); // 「unclip」扩张 float area = rect.size.area(); float perimeter = 2.f * (rect.size.width + rect.size.height); float distance = area * unclip_ratio / std::max(perimeter, 1.f); cv::Mat offset; cv::Mat(contour).convertTo(offset, CV_32F); std::vector<cv::Point2f> unclipPts; cv::convexHull(offset + (offset * (distance / cv::norm(offset))), unclipPts); cv::RotatedRect unclipRect = cv::minAreaRect(unclipPts); // 坐标缩放回原图 float scaleX = static_cast<float>(image.cols) / detW; float scaleY = static_cast<float>(image.rows) / detH; cv::Point2f pts[4]; unclipRect.points(pts); TextBox box; for (int i = 0; i < 4; ++i) box.pts.append(QPointF(pts[i].x * scaleX, pts[i].y * scaleY)); box.score = score; finalBoxes.append(std::move(box)); } // ---------- 6. 从上到下排序 ---------- std::sort(finalBoxes.begin(), finalBoxes.end(), [](const TextBox& a, const TextBox& b) { return a.pts[0].y() < b.pts[0].y(); }); return finalBoxes; } // =============================================== // 2. 文字方向分 // =============================================== bool OcrService::needRotate(const cv::Mat& roi) { const int clsH = 48, clsW = 192; cv::Mat rgb, resized; cv::cvtColor(roi, rgb, cv::COLOR_BGR2RGB); cv::resize(rgb, resized, cv::Size(clsW, clsH)); resized.convertTo(resized, CV_32FC3, 1.0 / 255); QVector<float> data(clsH * clsW * 3); std::memcpy(data.data(), resized.data, data.size() * sizeof(float)); Ort::MemoryInfo memInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); auto tensor = Ort::Value::CreateTensor<float>(memInfo, data.data(), data.size(), makeShape4(1, 3, clsH, clsW)[0].data(), 4); const char* inName = cls_session_->GetInputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get(); const char* outName = cls_session_->GetOutputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get(); auto outs = cls_session_->Run(Ort::RunOptions{ nullptr }, &inName, &tensor, 1, &outName, 1); float* outPtr = outs[0].GetTensorMutableData<float>(); // PP-OCR v5 CLS 输出 shape=[1,2],索引 1 代表 180° return outPtr[1] > outPtr[0]; } // =============================================== // 3. 识别模块 // =============================================== QString OcrService::recognizeText(const cv::Mat& roi) { // -- 0. 载入一次字典 -- if (dict_.isEmpty()) { QFile f(":/models/ocr/onnx_ocr/ppocrv5/ppocrv5_dict.txt"); if (f.open(QFile::ReadOnly | QFile::Text)) while (!f.atEnd()) dict_.append(QString::fromUtf8(f.readLine().trimmed())); } const int recH = 48, recW = 320; cv::Mat rgb, resized; cv::cvtColor(roi, rgb, cv::COLOR_BGR2RGB); cv::resize(rgb, resized, cv::Size(recW, recH)); resized.convertTo(resized, CV_32FC3, 1.0 / 255); QVector<float> data(recH * recW * 3); std::memcpy(data.data(), resized.data, data.size() * sizeof(float)); Ort::MemoryInfo memInfo = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); auto tensor = Ort::Value::CreateTensor<float>(memInfo, data.data(), data.size(), makeShape4(1, 3, recH, recW)[0].data(), 4); const char* inName = rec_session_->GetInputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get(); const char* outName = rec_session_->GetOutputNameAllocated(0, Ort::AllocatorWithDefaultOptions()).get(); auto outs = rec_session_->Run(Ort::RunOptions{ nullptr }, &inName, &tensor, 1, &outName, 1); // -- 后处理 CTC 解码 (argmax) -- Ort::Value& output = outs[0]; auto shape = output.GetTensorTypeAndShapeInfo().GetShape(); // [1, T, C] int T = int(shape[1]), C = int(shape[2]); float* ptr = output.GetTensorMutableData<float>(); QString result; int lastIdx = -1; for (int t = 0; t < T; ++t) { int maxIdx = 0; float maxVal = ptr[t * C]; for (int c = 1; c < C; ++c) if (ptr[t * C + c] > maxVal) { maxVal = ptr[t * C + c]; maxIdx = c; } // CTC:去重 / 去 blank(0) if (maxIdx != lastIdx && maxIdx > 0 && maxIdx < dict_.size()) result.append(dict_[maxIdx]); lastIdx = maxIdx; } return result; } // D:\wzl\project\wzl_qt_work\src\cpp\ocr\OcrService.h #pragma once #include <memory> #include <opencv2/opencv.hpp> #include <onnxruntime_cxx_api.h> #include <QString> #include <QVector> // 文本框结构体,四点顺时针 struct TextBox { QVector<QPointF> pts; float score = 0.0f; }; class OcrService { public: explicit OcrService(QString& model_dir); QVector<QString> performOcr(const cv::Mat& image); private: // ==== 模块化接口 ==== QList<TextBox> detectTextBoxes(const cv::Mat& image, float det_thresh = 0.3f, float box_thresh = 0.6f, float unclip_ratio = 2.0f); bool needRotate(const cv::Mat& roi); QString recognizeText(const cv::Mat& roi); // ==== ONNX Runtime ==== Ort::Env env_; Ort::SessionOptions session_options_; std::unique_ptr<Ort::Session> det_session_; std::unique_ptr<Ort::Session> cls_session_; std::unique_ptr<Ort::Session> rec_session_; bool is_initialized_ = false; // ==== 字典缓存 ==== QStringList dict_; }; // D:\wzl\project\wzl_qt_work\src\cpp\test\Test.cpp #include "Test.h" #include "WindowManager.h" extern WindowManager* g_windowManager; Test::Test() { QTextStream qout(stdout); QTextStream qerr(stderr); // =======================【请修改这里】======================= // 设置你的 ONNX 模型所在的文件夹路径 QString model_directory = "D:/wzl/project/wzl_qt_work/assets/models/ocr/onnx_ocr/ppocrv5/"; // 设置你要测试的图片完整路径 QString image_path = "D:/mhxy.jpg"; // <--- 必须修改为一张有效图片路径! // ========================================================== std::unique_ptr<OcrService> ocr_service; // --- 步骤 1: 初始化 OCR 服务 --- // 使用 try-catch 结构来安全地处理初始化过程中可能抛出的异常 try { qout << "[INFO] Initializing OCR service from: " << model_directory << "\n"; ocr_service = std::make_unique<OcrService>(model_directory); qout << "[SUCCESS] OCR service initialized successfully." << "\n"; } catch (const std::runtime_error& e) { // 如果构造函数抛出异常 (如模型文件找不到), 在这里捕获并打印错误信息 std::cerr << "[ERROR] OCR service initialization failed: " << e.what() << "\n"; return; // 初始化失败, 程序退出 } // --- 步骤 2: 加载测试图片 --- qout << "\n[INFO] Loading image from: " << image_path << "\n"; cv::Mat image = cv::imread(image_path.toStdString()); if (image.empty()) { qerr << "[ERROR] Could not load image. Please check the path: " << image_path << "\n"; return; } qout << "[SUCCESS] Image loaded." << "\n"; // --- 步骤 3: 执行 OCR 并获取结果 --- qout << "\n[INFO] Performing OCR on the image..." << "\n"; QVector<QString> ocr_results = ocr_service->performOcr(image); // --- 步骤 4: 打印识别结果 --- qout << "\n========== OCR Results ==========" << "\n"; if (ocr_results.empty()) { qout << "No text was detected in the image." << "\n"; } else { int line_num = 1; for (const auto& line : ocr_results) { qout << "Line " << line_num++ << ": " << line << Qt::endl; } } qout << "===============================" << "\n"; } #### 这是我windows Qt 6.9 Quick CMake 项目的目录结构: "D:\wzl\project\wzl_qt_work\CMakeLists.txt" "D:\wzl\project\wzl_qt_work\src\resources.qrc" "D:\wzl\project\wzl_qt_work\src\qml\" "D:\wzl\project\wzl_qt_work\src\qml\Main.qml" "D:\wzl\project\wzl_qt_work\src\qml\WzlText.qml" "D:\wzl\project\wzl_qt_work\src\qml\SettingsWindow.qml" "D:\wzl\project\wzl_qt_work\src\cpp\" "D:\wzl\project\wzl_qt_work\src\cpp\pch.h" "D:\wzl\project\wzl_qt_work\src\cpp\CMakeLists.txt" "D:\wzl\project\wzl_qt_work\src\cpp\main.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\WindowManager.h" "D:\wzl\project\wzl_qt_work\src\cpp\WindowManager.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\BackendController.h" "D:\wzl\project\wzl_qt_work\src\cpp\BackendController.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\DataModel.h" "D:\wzl\project\wzl_qt_work\src\cpp\DataModel.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\system_info\wzl_regedit.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\documentProcessing\pdf\wzl_pdf.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\documentProcessing\wzl_file.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\ocr\wzl_ocr.cpp" "D:\wzl\project\wzl_qt_work\src\cpp\ocr\OcrService.h" "D:\wzl\project\wzl_qt_work\src\cpp\ocr\OcrService.cpp" "D:\wzl\project\wzl_qt_work\out\build\debug\python\ocr\ocr_test.py" "D:\wzl\project\wzl_qt_work\assets\images\" "D:\wzl\project\wzl_qt_work\assets\images\icons\main.ico" "D:\wzl\project\wzl_qt_work\assets\models\ocr\onnx_ocr\ppocrv5\ppocrv5_dict.txt" "D:\wzl\project\wzl_qt_work\assets\models\ocr\onnx_ocr\ppocrv5\cls\cls.onnx" "D:\wzl\project\wzl_qt_work\assets\models\ocr\onnx_ocr\ppocrv5\det\det.onnx" "D:\wzl\project\wzl_qt_work\assets\models\ocr\onnx_ocr\ppocrv5\rec\rec.onnx" "D:\wzl\project\wzl_qt_work\third_party\onnxruntime-win-x64-1.22.0\include\" "D:\wzl\project\wzl_qt_work\third_party\onnxruntime-win-x64-1.22.0\lib\" "D:\vcpkg\packages\opencv4_x64-windows\include\" "D:\vcpkg\packages\opencv4_x64-windows\lib" # D:\wzl\project\wzl_qt_work\CMakeLists.txt cmake_minimum_required(VERSION 3.16) project(wzl_qt_work VERSION 0.1 LANGUAGES CXX) set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED ON) # === 启用预编译头和Qt特性 === set(CMAKE_PCH_INSTANTIATE_TEMPLATES ON) # 启用 `AUTOMOC/AUTORCC/AUTOUIC` 自动处理Qt特性 set(CMAKE_AUTOMOC ON) set(CMAKE_AUTORCC ON) set(CMAKE_AUTOUIC ON) # 指定Qt安装路径(根据实际情况调整) if(MSVC) # 当使用 Visual Studio 时,使用 MSVC 版本的 Qt # 检查是否使用 Microsoft Visual Studio 的编译器 (`MSVC`) set(Qt6_DIR "E:/Qt/6.10.0/msvc2022_64/lib/cmake/Qt6") else() # 其他环境(例如在 Qt Creator 中使用 MinGW 工具链) # set(Qt6_DIR "E:/Qt/6.10.0/llvm-mingw_64/lib/cmake/Qt6") set(Qt6_DIR "E:/Qt/6.10.0/msvc2022_64/lib/cmake/Qt6") endif() # === Qt 模块 === find_package(Qt6 REQUIRED COMPONENTS Quick Core Qml Network Gui Widgets QuickControls2 QuickLayouts) qt_standard_project_setup(REQUIRES 6.8) # windows 下,用 Visual Studio 2022 打开 Qt Quick CMake 项目,编译报错: # error 指令: "Qt requires a C++17 compiler, and a suitable value for __cplusplus. On MSVC, you must pass the /Zc:__cplusplus option to the compiler." # error: "Qt requires a C++17 compiler, and a suitable value for __cplusplus. On MSVC, you must pass the /Zc:__cplusplus option to the compiler." # windows 下,用Visual Studio 2022 打开 Qt Quick CMake 项目,编译报错: # E:\Qt\6.10.0\llvm-mingw_64\include\QtCore\qcompilerdetection.h(1327): error C2338: static_assert failed: 'On MSVC you must pass the /permissive- option to the compiler.' # C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.44.35207\include\type_traits(323): error C2139: “QString”: 未定义的不允许作为编译器内部型特征“__is_convertible_to”的参数 if(MSVC) add_compile_options( # 报告 C++ 标准 /Zc:__cplusplus # 启用严格标准符合模式 /permissive- # 强制源码使用 UTF-8 编码,解决中文路径问题 /utf-8 ) # 启用 ASLR,专门针对 Windows 平台和 MSVC 编译器的重要安全设置,传递给 MSVC 链接器 (link.exe) 的选项, # - **地址空间布局随机化 (ASLR - Address Space Layout Randomization)** # - 每次程序运行时,操作系统会将程序加载到**随机的内存地址** # - 防止攻击者预测关键函数/数据的内存位置 add_link_options(/DYNAMICBASE) endif() # === 预编译头 === # 将 `define_url.h` 添加到 `PRECOMPILE_HEADERS` 变量中,确保 CMake 能正确识别其为预编译依赖 # 显式添加 define_url.h 到源文件列表(确保预编译依赖正确) set(PRECOMPILE_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/src/cpp/pch.h ${CMAKE_CURRENT_SOURCE_DIR}/src/cpp/define_url.h ) # === 添加可执行目标 === # Qt Creator 会解析 CMake 目标中的文件列表 # 所有添加到可执行目标 (`qt_add_executable`) 的文件都会显示在项目树中 qt_add_executable(appwzl_qt_work src/cpp/main.cpp # 添加 shortcut_key.h 仅用于在 IDE 中显示;这样会将文件添加到 Qt Creator 的项目树中,但不会尝试编译它(因为它不是源文件) src/cpp/shortcut_key.h # 将头文件加入可执行文件依赖 ${PRECOMPILE_HEADERS} src/cpp/BackendController.cpp src/cpp/BackendController.h src/cpp/WindowManager.cpp src/cpp/WindowManager.h src/cpp/DataModel.cpp src/cpp/DataModel.h src/cpp/wzl_dll.cpp src/cpp/test/Test.h src/cpp/test/Test.cpp src/cpp/test/company.cpp src/cpp/ocr/wzl_ocr.cpp src/cpp/ocr/OcrService.h src/cpp/ocr/OcrService.cpp src/cpp/system_info/wzl_regedit.cpp src/cpp/documentProcessing/wzl_file.cpp src/cpp/documentProcessing/pdf/wzl_pdf.cpp qt_faq.md README.md ) # === Qt 资源文件 === qt_add_resources(appwzl_qt_work "app_resources" PREFIX "/" FILES src/resources.qrc assets/images/icons/main.ico ) # === 预编译头设置 === #target_precompile_headers(appwzl_qt_work PRIVATE # "$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/src/cpp/pch.h>" #) # 配置预编译头(更新为使用列表) target_precompile_headers(appwzl_qt_work PRIVATE ${PRECOMPILE_HEADERS}) # === 包含头文件目录 === target_include_directories(appwzl_qt_work PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/cpp ) # === 添加 QML 模块 === qt_add_qml_module(appwzl_qt_work URI "wzl_qt_work" VERSION "1.0" RESOURCE_PREFIX "/" QML_FILES src/qml/Main.qml src/qml/SettingsWindow.qml src/qml/wzl_text/WzlText.qml ) # 设置目标属性(包括 Windows 和 macOS 平台) set_target_properties(appwzl_qt_work PROPERTIES MACOSX_BUNDLE_BUNDLE_VERSION ${PROJECT_VERSION} MACOSX_BUNDLE_SHORT_VERSION_STRING "${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}" MACOSX_BUNDLE TRUE # 打开:会显示控制台;注释:隐藏控制台 WIN32_EXECUTABLE TRUE ) # === 链接 Qt 模块 === target_link_libraries(appwzl_qt_work PRIVATE Qt6::Quick Qt6::Core Qt6::Qml Qt6::Network Qt6::Gui Qt6::Widgets Qt6::QuickControls2 Qt6::QuickLayouts ) # === 新增 OpenCV 支持 === find_package(OpenCV REQUIRED) target_include_directories(appwzl_qt_work PRIVATE ${OpenCV_INCLUDE_DIRS}) target_link_libraries(appwzl_qt_work PRIVATE ${OpenCV_LIBS}) # === 新增 ONNX Runtime 支持 === set(ONNXRUNTIME_DIR "${CMAKE_CURRENT_SOURCE_DIR}/third_party/onnxruntime-win-x64-1.22.0") target_include_directories(appwzl_qt_work PRIVATE ${ONNXRUNTIME_DIR}/include) target_link_directories(appwzl_qt_work PRIVATE ${ONNXRUNTIME_DIR}/lib) target_link_libraries(appwzl_qt_work PRIVATE onnxruntime) # === 安装规则 === include(GNUInstallDirs) install(TARGETS appwzl_qt_work BUNDLE DESTINATION . LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR} )
最新发布
06-17
cmake_minimum_required(VERSION 3.14) project(SmartEQ_Android_SO LANGUAGES CXX C) set(CMAKE_AUTOUIC ON) set(CMAKE_AUTOMOC ON) set(CMAKE_AUTORCC ON) set(CMAKE_CXX_STANDARD 11) set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_C_STANDARD 99) set(CMAKE_SYSTEM_NAME Android) set(CMAKE_SYSTEM_VERSION 31) # 或者您需要的 Android API 级别 set(CMAKE_ANDROID_ARCH_ABI arm64-v8a) # 设置为 arm64-v8a find_package(QT NAMES Qt6 Qt5 REQUIRED COMPONENTS Core) find_package(Qt${QT_VERSION_MAJOR} REQUIRED COMPONENTS Core) # 添加头文件路径 include_directories( ${CMAKE_CURRENT_SOURCE_DIR}/FFTW2/HeadFile/fftw ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/block ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/gsl ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/interpolation ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/linalg ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/view ${CMAKE_CURRENT_SOURCE_DIR}/EigenLib ${CMAKE_CURRENT_SOURCE_DIR}/ ) file(GLOB FFTW2_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/FFTW2/SourceFile/fftw/*.c ${CMAKE_CURRENT_SOURCE_DIR}/*.c ) file(GLOB GSL_SOURCES ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/interpolation/*.c ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/linalg/*.c ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/view/*.c ) ## 声明并链接自定义库 libFFTW_GSL_SO.so ## -------------------------------------------- #if(ANDROID) # # Android 平台:动态处理 ABI 和多架构 # set(ANDROID_ABIS arm64-v8a) # foreach(abi ${ANDROID_ABIS}) # if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/FFTWGSL/${abi}/libFFTW_GSL_SO.so) # # 声明 IMPORTED 库目标 # add_library(FFTW_GSL_SO_${abi} SHARED IMPORTED) # set_target_properties(FFTW_GSL_SO_${abi} PROPERTIES # IMPORTED_LOCATION ${CMAKE_CURRENT_SOURCE_DIR}/FFTWGSL/${abi}/libFFTW_GSL_SO.so # ) # endif() # endforeach() #else() # # 非 Android 平台(如 Linux) # add_library(FFTW_GSL_SO SHARED IMPORTED) # set_target_properties(FFTW_GSL_SO PROPERTIES # IMPORTED_LOCATION ${CMAKE_CURRENT_SOURCE_DIR}/FFTWGSL/arm64-v8a/libFFTW_GSL_SO.so # ) #endif() add_library(SmartEQ_Android_SO SHARED smarteq_android_so.cpp smarteq_android_so.h ${FFTW2_SOURCES} ${GSL_SOURCES} fftw_gsl_so.h fftw_gsl_so.cpp ) target_include_directories(SmartEQ_Android_SO PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/FFTW2/HeadFile/fftw ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/block ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/gsl ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/interpolation ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/linalg ${CMAKE_CURRENT_SOURCE_DIR}/GSL/HeadFile/view ${CMAKE_CURRENT_SOURCE_DIR}/ ${CMAKE_CURRENT_SOURCE_DIR}/EigenLib # ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/interpolation # ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/linalg # ${CMAKE_CURRENT_SOURCE_DIR}/GSL/SourceFile/view ) ## 链接依赖库 #target_link_libraries(SmartEQ_Android_SO PRIVATE # Qt${QT_VERSION_MAJOR}::Core # FFTW_GSL_SO_${ANDROID_ABI} # Android 平台按 ABI 链接 #) #target_include_directories(SmartEQ_Android_SO PRIVATE # ${CMAKE_CURRENT_SOURCE_DIR}/FFTWGSL/arm64-v8a #) target_link_libraries(SmartEQ_Android_SO PRIVATE Qt${QT_VERSION_MAJOR}::Core) target_compile_definitions(SmartEQ_Android_SO PRIVATE SMARTEQ_ANDROID_SO_LIBRARY) 为什么会爆以上的错误
04-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值