12. 查看执行计划

查看执行计划

​ MySQL 提供了一个 EXPLAIN 命令, 它可以对 SELECT 语句的执行计划进行分析, 并输出 SELECT 执行的详细信息, 以供开发人员针对性优化。

​ 查看该SQL语句有没有使用上了索引,有没有做全表扫描,这都可以通过explain命令来查看。

​ 可以通过explain命令深入了解MySQL的基于开销的优化器,还可以获得很多可能被优化器考虑到的访问策略的细节,以及当运行SQL语句时哪种策略预计会被优化器采用。

​ EXPLAIN 命令用法十分简单, 在 SELECT 语句前加上 explain 就可以了, 例如:

在这里插入图片描述

参数说明

  • id

    每个 SELECT语句都会自动分配的一个唯一标识符.

  • select_type

    查询类型,主要用于区别普通查询、联合查询(union、union all)、子查询等复杂查询

  • table

    显示的查询表名,如果查询使用了别名,那么这里显示的是别名

  • type

    可以判断是否使用到索引

  • possible_keys

    此次查询中可能选用的索引,一个或多个

  • key

    查询真正使用到的索引, select_type为index_merge时,这里可能出现两个以上的索引,其他的select_type这里只 会出现一个。

  • key_len

    • 用于处理查询的索引长度,如果是单列索引,那就整个索引长度算进去,如果是多列索引,那么查询不一定都能使用到所有的列,具体使用到了多少个列的索引,这里就会计算进去,没有使用到的列,这里不会计算进去。
    • 留意下这个列的值,算一下你的多列索引总长度就知道有没有使用到所有的列了。
    • 另外,key_len只计算where条件用到的索引长度,而排序和分组就算用到了索引,也不会计算到key_len中。
  • ref

    • 如果是使用的常数等值查询,这里会显示const
    • 如果是连接查询,被驱动表的执行计划这里会显示驱动表的关联字段
    • 如果是条件使用了表达式或者函数,或者条件列发生了内部隐式转换,这里可能显示为func
  • rows

    这里是执行计划中估算的扫描行数,不是精确值(InnoDB不是精确的值,MyISAM是精确的值,主要原因是InnoDB 里面使用了MVCC并发机制)

  • extra

    这个列包含不适合在其他列中显示但十分重要的额外的信息

准备工作
--用户表 
create table tuser( 
id int primary key, 
loginname varchar(100), 
name varchar(100), 
age int, 
sex char(1), 
dep int, 
address varchar(100) 
);

--部门表 
create table tdep( 
id int primary key, 
name varchar(100) 
);

--地址表 
create table taddr( 
id int primary key, 
addr varchar(100) 
);

--创建普通索引 
alter table tuser add index idx_dep(dep);

--创建唯一索引 
alter table tuser add unique index idx_loginname(loginname);

--创建组合索引
alter table tuser add index idx_name_age_sex(name,age,sex);

--创建全文索引 
alter table taddr add fulltext ft_addr(addr);

--创建普通索引
alter table tdep add index idx_name(name);
1. id

每个SELECT语句都会自动分配的一个唯一标识符

  • 表示查询中操作表的顺序,有三种情况:
    • id相同: 执行顺序由上到下
    • id不同 : 如果是子查询,id号会自增,id越大,优先级越高
    • id相同的、不同的 同时存在
  • id 列为null的就表示这个是一个结果集,不需要使用它来进行查询。
2. select_type

查询类型,主要用于区别普通查询、联合查询(union、 union all) 、子查询等复杂查询

1. simple

表示不需要union 操作或者不包含子查询的简单select查询。有连接查询时,外层的查询为simple,且只有一个

explain select * from tuser;

在这里插入图片描述

2. primary

一个需要union操作或者含有子查询的select,位于最外层的单位查询的select_type即为primary。且只有一个

explain select (select name from tuser) from tuser;

在这里插入图片描述

3. subquery

除了from子句中包含的子查询外,其他地方出现的子查询都可能是subquery

explain select * from tuser where id = (select max(id) from tuser);

在这里插入图片描述

4. dependent subquery

与dependent union类似,表示这个subquery的查询要受到外部表查询的影响

explain select id, name , (select name from tdep a where a.id = b.dep) from tuser b;

在这里插入图片描述

5. union

union连接的两个select查询,第一个查询是PRIMARY,除了第一个表外,第二个以后的表select_type都是union

explain select * from tuser where sex = '1' union select * from tuser where sex = '2';

在这里插入图片描述

6. dependent union

与union一样,出现在union 或union all语句中,但是这个查询要受到外部查询的影响

explain select * from tuser where sex in (select sex from tuser where sex = '1' union select sex from tuser where sex = '2');

在这里插入图片描述

7. union result

包含union的结果集,在union和union all 语句中,因为它不需要参与查询,所以id字段为null

explain select * from tuser where sex = '1' union select * from tuser where sex = '2';

在这里插入图片描述

8. derived

from子句中出现的子查询,也叫做派生表,其他数据库中可能叫做内联视图或嵌套select

explain select * from (select * from tuser where sex = '1') b;

在这里插入图片描述

3. table
  • 显示的查询表名,如果查询使用了别名,那么这里显示的是别名
  • 如果不涉及对数据表的操作,那么这显示为null
  • 如果显示为尖括号括起来的就表示这个是临时表,后边的N就是执行计划中的id,表示结果来自于这个查询产 生。
  • 如果是尖括号括起来的<union M,N>,与类似,也是一个临时表,表示这个结果来自于union查询的id为M,N的 结果集。
4. type(重要)
  • 依次从好到差
system,const,eq_ref, ref, fulltext, ref_or_null, unique_subquery, index_subquery, range, index_merge, index, ALL

除了ALL之外,其他的type都可以使用到索引,除了index_merge之外,其他的type只可以用到一个索引

  • 注意事项:
最少要索引使用到range级别
1. system

表中只有一行数据或者是空表

explain select * from (select * from tuser where id = 1) a;

在这里插入图片描述

2. const

使用唯一索引或者主键,返回记录一定是1行记录的等值where条件时,通常type是const。其他数据库也叫做唯一索 引扫描

explain select * from tuser where id = 1;

在这里插入图片描述

explain select * from tuser where loginname = '1';

在这里插入图片描述

3. eq_ref

关键字:连接字段主键或者唯一性索引

此类型通常出现在多表的 join 查询, 表示对于前表的每一个结果, 都只能匹配到后表的一行结果. 并且查询的比较操作通常是 ‘=’, 查询效率较高.

explain select a.id from tuser a left join tdep b on a.dep = b.id;

在这里插入图片描述

4. ref

针对非唯一性索引,使用等值(=) 查询 非主键。或者是使用了最左前缀规则索引的查询

# 非唯一索引
explain select * from tuser where dep = 1;

在这里插入图片描述

# 等值非主键连接
explain select a.id from tuser a left join tdep b on a.name = b.name;

在这里插入图片描述

# 最左前缀
explain select * from tuser where name = 'zhaoyun';

在这里插入图片描述

5. fulltext

全文索引检索,全文索引的优先级很高,若全文索引和普通索引同时存在时,mysql不管代价,优先选择使用全文索引

explain select * from taddr where match(addr) against('bei');

在这里插入图片描述

6. ref_or_null

与ref方法类似,只是增加了null值的比较。实际用的不多

7. unique_subquery

用于where中的in形式子查询,子查询返回不重复值唯一值

8. index_subquery

用于in形式子查询使用到了辅助索引或者in常数列表,子查询可能返回重复值,可以使用索引将子查询去重。

9. range(重要)

索引范围扫描,常见于使用>,<,is null, between, in, like 等运算符的查询中

## tuser表至少要有一条数据id大于1
explain select id from tuser where id > 1;

在这里插入图片描述

# like前缀索引
explain select * from tuser where name like 'z%';

在这里插入图片描述

10. index_merge

表示查询使用了两个以上的索引,最后取交集或者并集,常见and、or的条件使用了不同的索引

11. index(重要)

关键字: 条件时出现在索引树中的节点的。可能没有完全匹配索引。

索引全表扫描,把索引从头到尾扫一遍,常见于使用索引列就可以处理不需要读取数据文件的查询、可以使用索引排序或者分组的查询。

# 单索引
explain select loginname from tuser;

在这里插入图片描述

# 组合索引
explain select age from tuser;

在这里插入图片描述

12. all(重要)

这个就是全表扫描数据文件,然后再在server层进行过滤返回符合要求的记录。

explain select * from tuser;

在这里插入图片描述

5. extra(重要)
1. distinct

在select部分使用了distinct关键字

2. no tables used

不带from子句的查询或者from dual查询

3. 使用not in 形式子查询或not exists运算符的连接查询,这种叫做反连接

即,一般连接查询是先查询内表,再查询外表,反连接就是先查询外表,再查询内表。

4. using filesort(重要)
  • 排序时无法使用到索引时,就会出现这个。常见于order by 和 group by 语句中
  • 说明MySQL会使用一个外部的索引排序,而不是按照索引顺序进行读取。
  • MySQL中无法利用索引完成的排序操作称为“文件排序”
explain select * from tuser order by address;

在这里插入图片描述

5. using index(重要)

查询时不需要回表查询,直接通过索引就可以获取查询的数据。

  • 表示相应的SELECT查询中使用到了覆盖索引(Covering Index),避免访问表的数据行,效率不错!
  • 如果同时出现Using Where ,说明索引被用来执行查找索引键值
  • 如果没有同时出现Using Where ,表明索引用来读取数据而非执行查找动作。
explain select name, age, sex from tuser;

在这里插入图片描述

6. using sort_union,using_union,using intersect,using sort_intersection
  • using intersect:表示使用and的各个索引的条件时,该信息表示是从处理结果获取交集
  • using union:表示使用or连接各个使用索引的条件时,该信息表示从处理结果获取并集
  • using sort_union和using sort_intersection:与前面两个对应的类似,只是他们是出现在用and和or查询信息量大时,先查询主键,然后进行排序合并后,才能读取记录并返回。
7. using temporary
  • 表示使用了临时表存储中间结果。
  • MySQL在对查询结果order by和group by时使用临时表
  • 临时表可以是内存临时表和磁盘临时表,执行计划中看不出来,需要查看status变量,used_tmp_table, used_tmp_disk_table才能看出来。
explain select distinct a.id from tuser a, tdep b where a.dep = b.id;

在这里插入图片描述

8. using where(重要)

​ 表示存储引擎返回的记录并不是所有的都满足查询条件,需要在server层进行过滤。

# 查询条件无索引
explain select * from tuser where address = 'beijing';

在这里插入图片描述

# 索引失效
explain select * from tuser where age = 1;

在这里插入图片描述

# 索引失效
explain select * from tuser where id in (1,2);

在这里插入图片描述

9. using index condition

​ 查询条件中分为限制条件和检查条件,5.6之前,存储引擎只能根据限制条件扫描数据并返回,然后server层根 据检查条件进行过滤再返回真正符合查询的数据。5.6.x之后支持ICP特性,可以把检查条件也下推到存储引擎 层,不符合检查条件和限制条件的数据,直接不读取,这样就大大减少了存储引擎扫描的记录数量。extra列显 示using index condition(索引下推,会用到索引)

explain select * from tuser where name = 'asd';

在这里插入图片描述

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值