从零开始训练你的 GPT-2:数据、分词、优化与评估全流程

本文基于 Hugging Face + PyTorch 的 GPT-2 微调任务,详细讲解训练过程中的 tokenizer 设置、batch 管理、loss 构建与性能调优,并展示完整可运行训练代码,适合模型调试初学者或 AI 工程师参考。


1️⃣ 环境准备与依赖框架

训练环境建议配置 GPU(如 RTX 3050 及以上),使用的核心库如下:

  • transformers:Hugging Face 提供的模型训练库
  • datasets:快速加载公开数据集(如 wikitext)
  • Trainer:封装好的训练器,免去自写循环

可用 pip 安装:

pip install transformers datasets

2️⃣ 加载模型与分词器(Tokenizer)

from transformers import GPT2LMHeadModel, GPT2Tokenizer

model_name = "gpt2"
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token  # ✅ 添加 pad_token 适配 batch
model = GPT2LMHeadModel.from_pretrained(model_name).to("cuda")

GPT-2 默认没有 pad_token,因为其主要用于单句生成。训练时建议手动添加。


3️⃣ 数据预处理流程:Token → Padding → Batch

from datasets import load_dataset

dataset = load_dataset("wikitext", "wikitext-2-raw-v1")

def tokenize_function(examples):
    tokens = tokenizer(
        examples["text"],
        truncation=True,
        padding="max_length",
        max_length=64  # ✅ 控制单条最大长度
    )
    tokens["labels"] = tokens["input_ids"].copy()
    return tokens

tokenized_datasets = dataset.map(tokenize_function, batched=True)
train_dataset = tokenized_datasets["train"]
eval_dataset = tokenized_datasets["validation"]
  • max_length=64:提升速度但牺牲上下文
  • labels=input_ids.copy():用于构建训练 loss
  • 使用 batch 能加速 GPU 计算(batch_size=4 推荐)

4️⃣ 模型优化技巧:节省显存 + 提速训练

✅ 启用 gradient checkpointing

model.gradient_checkpointing_enable()

该策略将 forward 中间状态不存内存,而是 backward 时重新计算,极大节省显存(适合小显存训练)。

✅ 开启混合精度训练:

fp16 = True  # 在 TrainingArguments 中设置

可加速训练 + 减少 GPU 显存使用,推荐开启。


5️⃣ 配置训练参数(TrainingArguments)

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="gpt2_finetune",
    evaluation_strategy="epoch",
    save_strategy="epoch",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=2,
    fp16=True,
    num_train_epochs=1,
    remove_unused_columns=False,
    deepspeed=None
)

重点说明:

  • fp16=True:半精度训练
  • remove_unused_columns=False:避免字段误删
  • num_train_epochs=1:可视情况改为 3~5 收敛更稳

6️⃣ 开始训练:Trainer 自动管理

from transformers import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset
)

trainer.train()

训练过程将每 epoch 自动评估并保存权重文件(包括 model.safetensorsconfig.jsontokenizer_config.json 等)。


7️⃣ 效果评估与调优建议

配置训练速度训练损失评估损失总时长
默认配置最慢最优最优44:40
开启 fp16+14% 快几乎不变几乎不变
加大 batch + 降 max_length+50% 快略升略升21:55
  • 损失略增可接受,建议结合 learning_rateepoch 进一步调节
  • loss 趋于稳定表示模型已收敛

📦 模型保存与复用

model.save_pretrained("./gpt2_finetune")
tokenizer.save_pretrained("./gpt2_finetune")

保存后的模型可直接用于推理(见第二篇)。


📌 总结

  • 本文完整展示 GPT-2 微调流程
  • 涉及 tokenizer 设置、batch/padding、优化技巧、完整代码结构
  • 提供调参建议 + 训练损失对比,适合入门微调任务
  • 对应项目 gpt2-train-deploy-demo 的 transformers1_training_3.py

🧭 本系列 GPT-2 实战三部曲


📌 YoanAILab 技术导航页

💡 项目源码 × 实战部署 × 转型经验,一页总览
👉 点击查看完整导航页

📚 包含内容:

  • 🧠 GPT-2 项目源码(GitHub)
  • ✍️ CSDN 技术专栏合集
  • 💼 知乎转型日志
  • 📖 公众号 YoanAILab 全文合集
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YoanAILab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值