transforms详解
一、transforms 介绍
transforms在计算机视觉工具包torchvision下:
torchvision.transforms : 常用的图像预处理方法
torchvision.datasets : 常用数据集的dataset实现,MNIST,CIFAR-10,ImageNet等
torchvision.model : 常用的模型预训练,AlexNet,VGG, ResNet,GoogLeNet等
torchvision.transforms : 常用的图像预处理方法,提高泛化能力
• 数据中心化
• 数据标准化
• 缩放
• 裁剪
• 旋转
• 翻转
• 填充
• 噪声添加
• 灰度变换
• 线性变换
• 仿射变换
• 亮度、饱和度及对比度变换
相当于真正高考前做的三年高考五年模拟,五年高考是原始数据,三年模拟是在原题基础上改的模拟题,真正高考碰见了分就高了
二、 transforms 运行机制
采用transforms.Compose(),将一系列的transforms有序组合,实现时按照这些方法依次对图像操作。
train_transform = transforms.Compose([
transforms.Resize