简单粗暴PyTorch之transforms详解(一)

一、transforms 介绍

transforms在计算机视觉工具包torchvision下:
torchvision.transforms : 常用的图像预处理方法
torchvision.datasets : 常用数据集的dataset实现,MNIST,CIFAR-10,ImageNet等
torchvision.model : 常用的模型预训练,AlexNet,VGG, ResNet,GoogLeNet等

torchvision.transforms : 常用的图像预处理方法,提高泛化能力
• 数据中心化
• 数据标准化
• 缩放
• 裁剪
• 旋转
• 翻转
• 填充
• 噪声添加
• 灰度变换
• 线性变换
• 仿射变换
• 亮度、饱和度及对比度变换

相当于真正高考前做的三年高考五年模拟,五年高考是原始数据,三年模拟是在原题基础上改的模拟题,真正高考碰见了分就高了

二、 transforms 运行机制

采用transforms.Compose(),将一系列的transforms有序组合,实现时按照这些方法依次对图像操作。

train_transform = transforms.Compose([
    transforms.Resize
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值