PCL 基于6D协方差的点云采样【2025最新版】

本文介绍了基于6D协方差的点云采样算法,该算法用于自动驾驶中的ICP算法,通过增量方式采样特征点,确保协方差矩阵的特征值接近,提高稳定性。引用了Gelfand等人的相关研究,并提供了代码实现和结果展示。

在这里插入图片描述

博客长期更新,本文最近更新时间为:2025年9月4日。

一、算法原理

1、原理概述

  基于6D协方差的采样主要是将采样点作为特征点用于ICP算法中,该算法以增量的方式采样特征点,同时尽量保持协方差矩阵的所有6个特征值尽可能接近彼此。该算法还包含一个ComputeConditionNumber方法,该方法返回一个数字,该数字显示采样点云作为ICP算法输入点云时的稳定性(值越接近1.0,越好)。

2、参考文献

[1] “Geometrically Stable Sampling for the ICP Algorithm” - N. Gelfand, L. Ikemoto, S. Rusinkiewicz, M. Levoy
[2]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值