【2025最新版】Open3D 点云快速欧式聚类(python详细过程版)

本文介绍了快速欧氏聚类(FEC)算法,这是一种用于点云分割的方法,尤其适用于遥感、机器人和自动驾驶场景。算法通过避免遍历每个点来提高效率。详细阐述了算法原理,包括论文概述、实现流程,并提供了参考文献。此外,文章还包含了代码实现、结果展示和实验数据链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

博客长期更新,本文最新更新时间为:2025年3月23日。

一、算法原理

1、论文概述

  从点云数据进行分割在许多应用中都是必不可少的,例如遥感、移动机器人或自动驾驶汽车。然而,三维距离传感器捕获的点云通常是稀疏和非结构化的,这对有效的分割提出了挑战。缺少计算量小的点云实例分割的快速解决方案。为此,提出了一种新的快速欧氏聚类(FEC)算法,该算法在现有聚类算法的基础上应用一种点聚类算法,避免了不断遍历每一个点。

2、实现流程

  首先将点云中所有点 P i \mathbf{P}_i P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值