Octave:梯度下降 线性回归编程

本文详细解析了Octave中实现的代价函数及梯度下降算法,展示了如何通过迭代调整参数来最小化代价函数,实现对线性回归模型的训练。文章深入探讨了代价函数的计算方式,以及梯度下降算法的具体步骤,包括设定学习率、更新参数等关键环节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

记录一下第一个Octave的代码。

传入的参数分别为自变量x,因变量(真实值)y,参数\Theta(随便给一个初值就行,但要注意向量的大小要和x,y匹配)

function J=function3(x, y, T)  %代价函数

J=1/(2*size(T,1))*sum((x*T-y).^2)
j=0;
m=0;
t1=0;
while 1,
	if(t1>=1000000),
		break;
	end

	for i=1:1:size(T,1),
		T(i)=T(i)-0.01*(1/size(T,1))*sum(x(:,i)'*(x*T-y));  %'
	end

	m=1/(2*size(T,1))*sum((x*T-y).^2);
	J=[J;j];                            %用来记录每次下降后的代价函数值
	if(abs(m-j)<=0.000000000000001),
		break;
	end

	j=m;

	t1=t1+1;
end


收敛效果(代价函数J)如图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值