运动想象迁移学习系列:基于Wasserstein距离的改进域适应网络
论文地址:https://ieeexplore.ieee.org/abstract/document/10035017
论文题目:Improved Domain Adaptation Network Based on Wasserstein Distance for Motor Imagery EEG Classification
论文代码:无
0. 引言
受生成对抗网络(GAN) 的启发,本研究旨在提出一种基于Wasserstein距离的改进域适应网络,该网络利用来自多个受试者(源域)的现有标记数据来提高单个受试者(目标域)的MI分类性能。具体来说,我们提出的框架由三个组件组成,包括特征提取器、域鉴别器和分类器。特征提取器采用注意力机制和方差层来提高对从不同MI类别中提取的特征的区分。接下来,领域鉴别器采用Wasserstein矩阵来测量源域与目标域之间的距离,并通过对抗学习策略对齐源域和目标域的数据分布。最后,分类器使用从源域获取的知识来预测目标域中的标签。
总得来说:将所有数据通过域适应的方法来提高某一数据的分类精度。本篇内容建议看着算法流程来进行解读。。。