Pytorch: IterableDataset详细使用


1. 前言

在 PyTorch 中,IterableDataset 是一种用于处理大量数据或无法一次性加载到内存中的数据集类。与 Dataset 不同的是,IterableDataset 是基于迭代器的,适用于顺序数据读取。

2. 基本使用方法

需要创建一个继承自 torch.utils.data.IterableDataset 的自定义数据集类,并实现 __iter__ 方法。

import torch
from torch.utils.data import IterableDataset, DataLoader

class MyIterableDataset(IterableDataset):
    def __init__(self, start, end):
        super(MyIterableDataset).__init__()
        self.start = start
        self.end = end

    def __iter__(self):
        # 返回一个生成器
        return iter(range(self.start, self.end))

# 创建数据集实例
dataset = MyIterableDataset(start=0, end=<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值