
点云配准算法类大全
文章平均质量分 88
点云配准是三维感知与重建的核心技术,通过对齐不同视角的点云数据,恢复完整的三维结构。本专栏包含ICP 类相关(GICP、M-ICP)算法、利用特征匹配的 FPFH/等特征初配准、鲁棒性的 RANSAC 系列、Graph-Cut系列鲁棒性方法,以及全局最优的 Go-ICP、NDT、MAC 等算法。
点云SLAM
目前工作领域为高精SLAM和点云数据处理相关行业,定位算法负责人。读研期间主要图像处理和三维点云数据处理方向的研究学习,工作以来一直在三维点云数据处理、三维重建、机器人感知、机器状态估计、SLAM 以及相关三维成像设备标定等相关三维领域的算法研究工作,熟悉PCL、 Open3D、OpenCV和CloudCompare等二、三维处理库
熟悉 CUDA/OpenCL 加速技术,对 LIO-SAM 系列、 VINS-Mono和ORB-SLAM 相关的 SLAM 技术研究开发应用到实际产品中,熟练使用G2O、Ceres和 GTSAM 优化库和数值优化原理。可商务合作,欢迎私聊!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
A Symmetric Objective Function for ICP点云配准算法简介和核心部分C++代码实现
是针对经典的算法提出的一种新的对称目标函数方法。ICP 旨在通过最小化源点云与目标点云之间的距离来实现点云的配准。然而,传统的 ICP 目标函数存在一些局限性,特别是在点云匹配不对称的情况下,可能会导致配准结果不准确。原创 2025-07-23 15:50:20 · 1059 阅读 · 0 评论 -
点到面(Point-to-Plane)点云配准中信息矩阵计算详解
对于源点psps和目标点ptpt及其单位法向量ntntrnt⊤Rpst−ptrnt⊤Rpst−ptR∈SO3R∈SO3为旋转矩阵t∈R3t∈R3为平移向量设最终优化变量为TR∣t∈SE3TR∣t∈SE3。原创 2025-05-17 19:01:49 · 1078 阅读 · 0 评论 -
高效稳健的几何模型估计算法-Graph-Cut RANSAC(GC-RANSAC)
设点xi( x_i )xi到模型θ( \theta )θ的残差为dxiθdxiθ))Dili0ifli1anddxiθϵ1ifli1anddxiθ≥ϵ0ifli0anddxiθ≥ϵλ′ifli0anddxiθϵD_i(l_i) =Dili⎩⎨⎧010λ′ifli1anddxiθϵifli。原创 2025-04-18 10:01:12 · 671 阅读 · 0 评论 -
点云配准算法之NDT算法原理详解
NDT(Normal Distributions Transform)最初用于2D激光雷达地图构建(Biber & Straßer, 2003),后扩展为3D点云配准。它将点云数据空间划分为网格单元(Voxel),在每个体素中拟合一个高斯分布,用此概率模型对点进行匹配优化。与 ICP 不同,NDT 是一个概率模型配准算法,具有更强的鲁棒性,适合处理稀疏/局部不一致的点云。对初始姿态误差鲁棒可导目标函数,利于快速优化支持稀疏点云、动态场景(配合滤波)原创 2025-04-24 11:29:52 · 1920 阅读 · 0 评论 -
咬合配准算法文献推荐
关于的研究,主要集中在。原创 2025-05-22 21:59:16 · 1043 阅读 · 0 评论 -
点云配准(点云拼接)论文综述
点云配准(Point Cloud Registration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综述点云配准的研究进展,涵盖经典方法与前沿技术,并探讨未来发展方向。原创 2025-02-24 09:37:37 · 2147 阅读 · 0 评论 -
点云配准算法和开源软件库
经典的点云配准 Standard ICP Besl, Paul J., and Neil D. McKay. "A method for registration of 3-D shapes." IEEE Transactions on pattern analysis and machine intelligence 14.2 (1992): 239-256. KD-tree ...原创 2018-09-14 11:42:10 · 2194 阅读 · 0 评论 -
G-ICP(Generalized Iterative Closest Point)点云配准算法原理
G-ICP是传统ICP(Iterative Closest Point)的扩展,通过引入点云的局部结构信息(协方差矩阵),将点云配准问题建模为概率分布之间的匹配问题,从而提升配准鲁棒性和精度。使用高斯-牛顿法或Levenberg-Marquardt算法迭代求解旋转。但未考虑点云的局部几何结构,对噪声和初始位姿敏感。是联合协方差矩阵,用于加权不同方向上的残差。分别为源点和目标点的协方差矩阵。原创 2025-03-13 09:32:42 · 1501 阅读 · 0 评论 -
CPD(Coherent Point Drift)非刚性点云配准算法
是一种基于概率模型的非刚性点云配准方法,由Andriy Myronenko等人在2009年提出。它通过将点云配准问题转化为概率密度估计问题,结合高斯混合模型(GMM)与正则化形变场,能够有效处理复杂形变(如人体运动、器官形变)的点云对齐任务。CPD算法通过概率建模与正则化形变场的结合,为非刚性点云配准提供了一种鲁棒且灵活的解决方案。尽管存在计算复杂度高的挑战,但其在医学、人脸识别等领域的成功应用证明了其理论价值。视为由高斯混合模型(GMM)生成的观测数据,其中每个高斯分布的中心对应源点云。原创 2025-02-24 10:12:13 · 3430 阅读 · 0 评论 -
点到面点云配准(Point To Plane)算法知识详解和详细推导,C++代码实现
点到面 ICP (Iterative Closest Point) 是在 3D 点云配准中常见的一种变体,通过最小化点到对应面(由法向量定义的局部平面)的距离来提高收敛速度和精度。原创 2025-06-02 15:36:38 · 1330 阅读 · 0 评论 -
Point-to-Plane ICP 配准 算法原理
目标函数:点到平面的距离平方和∑iRpit−qi⋅ni2i∑Rpit−qi⋅ni2线性化:利用小角度假设R≈Ia×R≈Ia×进行近似误差表达ei≈pi−qi⋅nia⋅pi×nit⋅niei≈pi−qi⋅nia⋅pi×nit⋅ni构造线性系统:令Aipi×niTniTAi。原创 2025-03-14 15:41:37 · 1533 阅读 · 0 评论 -
点云配准类相关文献阅读记录
点云配准类文献阅读记录原创 2024-04-26 10:03:25 · 235 阅读 · 0 评论 -
BCPD++(非刚性配准) 算法原理详解
BCPD++ 通过贝叶斯建模、变分推断与高效优化策略,为非刚性点云配准提供了高精度、高鲁棒性的解决方案。其核心创新包括分层超参数学习、稀疏近似与GPU加速,使其在医学、机器人等领域具有广泛应用前景。利用共轭先验的性质,超参数的后验分布保持相同形式(如Gamma、Beta分布),仅需更新其参数。(Bayesian Coherent Point Drift)的增强版本,专为。,显著提升了配准精度、鲁棒性与计算效率。由于高斯过程先验与高斯似然的共轭性,,非刚性配准的目标是找到形变场。,使得形变后的源点云。原创 2025-02-24 10:32:20 · 1248 阅读 · 1 评论 -
CPD非刚性配准算法原理详细解析
点云配准作为计算机视觉和三维数据处理领域的关键技术,旨在寻求一种空间变换,将不同来源的点云数据在同一坐标系下精确对齐。其核心目标是通过计算合适的旋转矩阵RRR和平移向量ttt,使源点云P={p1,p2,⋯ ,pn}P = \{p_1, p_2, \cdots, p_n\}P={p1,p2,⋯,pn}经过变换T(p)=Rp+tT(p) = Rp + tT(p)=Rp+t后,与目标点云Q={q1,q2,⋯ ,qm}Q = \{q_1, q_2, \cdots, q_m\}Q={q1,q2,⋯,qm}原创 2025-03-03 17:27:17 · 1520 阅读 · 0 评论