堆排序:结构逻辑上是完全二叉树,但是可以使用顺序存储来实现
一些二叉树的区别:
二叉树:度数最大为2并且每个子树也是二叉树
满二叉树:每层节点都是满的,没有空缺,也就是,叶子节点只能出现在最后一层
完全二叉树:限制条件比满二叉树弱化,只需要前k-1层是满二叉树结构,最后一层的叶子节点都靠左排列,右侧可以出出现连续缺失(一个学序列可以按照编号一一对应上满二叉树的节点编号)
以下不是满二叉树结构:
排序二叉树: 二叉树的基础上,加上 中序遍历是有序输出这一要求
平衡二叉树:排序二叉树的基础上,加上要求左右子树的深度差的绝对值只能是0或者1
现在回到堆排序:
具体满足什么条件的才是堆呢?
以大根堆为例: 对于每棵子树,都满足 根与左右孩子节点相比中最大的元素
堆排序的算法流程:
- 堆的初始化(将输入序列调整为符合堆的性质)
- 输出堆顶元素(将堆顶元素与堆尾元素交换,堆的大小-1)
- 调整堆结构
- 重复2 3 ,直到全部输出(堆大小变为0)
假设堆的编号是从0 开始
那么编号i的节点 (这规律没啥记忆的,画几个圈看下规律即可)
父节点:(i-1)/2
左孩子: 2*i+1
右孩子:2*i+2
最后一个非叶子节点编号: 假设堆共有n个节点,那么最后一个非叶子节点编号为 n/2-1
java代码实现:
/**
* @author wangwei
* @date 2019/3/9 8:52
* @classDescription 完全二叉树:比满二叉树条件稍弱
* 一共k层的完全二叉树,只要求第k-1层是满的
* 并且第k层的节点集中在左侧,也就是右侧可能出现连续缺失情况
*
* 大顶堆:根最大,每课子树只保证根大于左孩子,大于右孩子,但是不保证左右孩子之间的大小关系
*
* 给定序列,如何判断是否为堆呢?
* 将序列按照层次遍历的形式,构建完全二叉树,观察即可
* 比如:1 4 3 7 8 5
* 1
* / \
* 4 3
* / \ / \
* 7 8 5
* 显然是小根堆
*
* 堆排序思想:
* 1.以初始关键字序列,构建堆
* 2.输出堆顶最小元素
* 3,调整剩余元素,使其成为新堆
* 4,重复2,3 直到n个元素全部输出,得到一个有序序列
*
* 如果输入为数组:
* 当前为i (i从1开始)
* 则左孩子为 2*i
* 右孩子: 2*i+1
*
*
* 堆调整:将堆顶输出,最后孩子放置在堆顶,对剩余元素进行调整
* 新堆顶与左右孩子比较,
* 与较小孩子交换
* 直到调整到叶子节点或者是 比左右孩子都小时,停止调整
* 如何初始化序列建堆:从最后一个非叶子节点开始,向上调整,直到根节点
* // 最后一个非叶子节点是 n/2 向下取整
*
*
*
* 问题:为什么堆适合线性存储
* 答:因为堆是完全二叉树结构,堆中元素的位置能根据父节点索引计算得到,
* 所以不需要左右指针也可以找到子节点的位置
*
*/
public class HeapSort {
public void init(int []array){
if(null==array||0==array.length){
return;
}
// 注意:计算 左孩子 2*i ,这里表示编号是从1 开始
// 数组从0开始,则需要是 2*i+1
// 右孩子:2*i+2
// 最后一个非叶子节点 索引: n/2-1
// 最后一个非叶子节点,可能只有左孩子
for(int index=array.length/2-1;index>=0;index--){
int parent=array[index];
int lChild=array[2*index+1];
// 只有左孩子
if(2*index+2>array.length-1){
if(parent>lChild){
array[index]=lChild;
array[2*index+1]=parent;
}
}
// 左右孩子都有
else {
int rChild=array[2*index+2];
// 处理 parent 不是三者之中最小的
int minChildIndex=lChild<rChild? 2*index+1:2*index+2;
if(parent>array[minChildIndex]){
array[index]=array[minChildIndex];
array[minChildIndex]=parent;
}
}
}
}
// waitAdjust 堆顶元素,此函数就是为了将其调整到特定位置,满足小顶堆
// 索引在 minHeapEnd 是表示当前堆的最后一个元素索引
//
public void adjustHeap(int []array,int minHeapEnd){
int currentIndex=0;
int waitAdjust=array[0];
while (currentIndex<=minHeapEnd/2-1){
int leftChild=array[2*currentIndex+1];
// 只有左孩子
if(2*currentIndex+2>minHeapEnd){
if(leftChild>waitAdjust){
array[currentIndex]=leftChild;
currentIndex=2*currentIndex+1;// 走向左子树
}
}
// 左右孩子都有: 选取最小孩子交换
else{
int rChild=array[2*currentIndex+2];
int minChildIndex=leftChild<rChild? 2*currentIndex+1:2*currentIndex+2;
if(waitAdjust<=array[minChildIndex]){
break; // 结束调整
}else {
array[currentIndex]=array[minChildIndex];
currentIndex=minChildIndex;
}
}
}
array[currentIndex]=waitAdjust;
}
//将堆顶元素交换到tail (这里看作是输出)
public void pop(int[] array,int tail){
int temp=array[0];
array[0]=array[tail];
array[tail]=temp;
}
public void heapSort(int array[]){
if(null==array||0==array.length){
return;
}
init(array);
for(int i=0;i<array.length;i++){
pop(array,array.length-1-i);
// 注意堆调整的范围比之前的少一个元素
adjustHeap(array,array.length-1-i-1);
}
}
public static void main(String[] args) {
int [] array= {2,5,3,12,8,17,10,20,19,13};
RandomUtil.printArray(array);
new HeapSort().heapSort(array);
System.out.println("排序后:");
RandomUtil.printArray(array);
}
}
输出:
几个方法说明:
init(): 将输入序列初始化为堆
pop(int[] array,int tail): 输出,将堆顶元素交换到当前堆的 ** 最后一个位置 **
adjustHeap(int []array,int minHeapEnd): 调整堆,堆顶元素是来自堆尾的,可能不满足堆的性质,需要将其调整到
合适的位置
时间复杂度:初始化是o(n) ,调整重建是o(lgn),共需要n次重建 记为o(nlgn)
流程是:
初始化;// o(n)
while(i++<array.length){//o(n)
pop();
adjust();//(o lgn)
}
总的时间复杂度=o(n)+o(nlgn)=o(nlgn)
空间复杂度:只是使用了有限个简单变量,o(1)
注意:堆初始化和堆调整有些相似,但是是不一样的.
堆初始化:自底向上调整
堆调整:自上向下重建堆
堆排序的优化(只是一个思路,未证明):
(小顶堆为例)
堆排序哪里可以优化呢,都这么优秀了?
堆调整可能被优化,将堆尾元素与堆顶交换,而堆尾元素可能是是很大的,那么调整时,就会与很多层去比较,如何减少这个层的比较呢?
堆中从根节点到叶节点的一条路径是有序的
3
/ \
4 5
/ \ /\
7 6 8 10
现在需要将堆顶给移出,交换成如下树 h=3
10
/ \
4 5
/ \ /\
7 6 8 3
// h/2=1
// 根 10 与4 比较 10>4
// 交换 根成为4
4
/ \
10 5
/ \ /\
7 6 8 3
// 1. 调整子树 10
/ \
7 6
// 2. 根4与5比较,,根较小,不调整
可能的运用场景
top(k):时间复杂度 n(lgk)