堆排序算法实现

本文介绍了堆排序的原理,包括完全二叉树的概念、堆的性质以及堆排序的算法流程。通过Java代码展示了堆排序的过程,分析了时间复杂度,并提出了对堆调整可能的优化思路。堆排序在寻找top k问题等场景中有应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

堆排序:结构逻辑上是完全二叉树,但是可以使用顺序存储来实现

一些二叉树的区别:

二叉树:度数最大为2并且每个子树也是二叉树

二叉树:每层节点都是满的,没有空缺,也就是,叶子节点只能出现在最后一层
在这里插入图片描述

完全二叉树:限制条件比满二叉树弱化,只需要前k-1层是满二叉树结构,最后一层的叶子节点都靠左排列,右侧可以出出现连续缺失(一个学序列可以按照编号一一对应上满二叉树的节点编号)

在这里插入图片描述

以下不是满二叉树结构:

在这里插入图片描述在这里插入图片描述
排序二叉树: 二叉树的基础上,加上 中序遍历是有序输出这一要求
平衡二叉树:排序二叉树的基础上,加上要求左右子树的深度差的绝对值只能是0或者1

现在回到堆排序:
具体满足什么条件的才是堆呢?
以大根堆为例: 对于每棵子树,都满足 根与左右孩子节点相比中最大的元素

堆排序的算法流程:

  1. 堆的初始化(将输入序列调整为符合堆的性质)
  2. 输出堆顶元素(将堆顶元素与堆尾元素交换,堆的大小-1)
  3. 调整堆结构
  4. 重复2 3 ,直到全部输出(堆大小变为0)

假设堆的编号是从0 开始
那么编号i的节点 (这规律没啥记忆的,画几个圈看下规律即可)
父节点:(i-1)/2
左孩子: 2*i+1
右孩子:2*i+2
最后一个非叶子节点编号: 假设堆共有n个节点,那么最后一个非叶子节点编号为 n/2-1

java代码实现:


/**
 * @author  wangwei
 * @date     2019/3/9 8:52
 * @classDescription   完全二叉树:比满二叉树条件稍弱
 *                      一共k层的完全二叉树,只要求第k-1层是满的
 *                      并且第k层的节点集中在左侧,也就是右侧可能出现连续缺失情况
 *
 *                      大顶堆:根最大,每课子树只保证根大于左孩子,大于右孩子,但是不保证左右孩子之间的大小关系
 *
 *          给定序列,如何判断是否为堆呢?
 *          将序列按照层次遍历的形式,构建完全二叉树,观察即可
 *          比如:1  4 3  7 8 5
 *              1
 *             / \
 *            4   3
 *          /  \  / \
 *          7   8 5
 *    显然是小根堆
 *
 *    堆排序思想:
 *    1.以初始关键字序列,构建堆
 *    2.输出堆顶最小元素
 *    3,调整剩余元素,使其成为新堆
 *    4,重复2,3 直到n个元素全部输出,得到一个有序序列
 *
 *    如果输入为数组:
 *    当前为i  (i从1开始)
 *    则左孩子为 2*i
 *     右孩子:   2*i+1
 *
 *
 *     堆调整:将堆顶输出,最后孩子放置在堆顶,对剩余元素进行调整
 *            新堆顶与左右孩子比较,
 *           与较小孩子交换
 *           直到调整到叶子节点或者是 比左右孩子都小时,停止调整
 *      如何初始化序列建堆:从最后一个非叶子节点开始,向上调整,直到根节点
 *      //      最后一个非叶子节点是  n/2  向下取整
 *
 *
 *
 *      问题:为什么堆适合线性存储
 *      答:因为堆是完全二叉树结构,堆中元素的位置能根据父节点索引计算得到,
 *      所以不需要左右指针也可以找到子节点的位置
 *
 */
public class HeapSort {

    public  void init(int []array){
        if(null==array||0==array.length){
            return;
        }
        // 注意:计算  左孩子 2*i  ,这里表示编号是从1 开始
        //               数组从0开始,则需要是 2*i+1
        //               右孩子:2*i+2
        //  最后一个非叶子节点 索引:  n/2-1
        // 最后一个非叶子节点,可能只有左孩子
        for(int index=array.length/2-1;index>=0;index--){
            int parent=array[index];
            int lChild=array[2*index+1];

            // 只有左孩子
            if(2*index+2>array.length-1){
                if(parent>lChild){
                    array[index]=lChild;
                    array[2*index+1]=parent;
                }

            }
            // 左右孩子都有
            else {
                int rChild=array[2*index+2];
                // 处理  parent 不是三者之中最小的
                int minChildIndex=lChild<rChild? 2*index+1:2*index+2;
                if(parent>array[minChildIndex]){
                    array[index]=array[minChildIndex];
                    array[minChildIndex]=parent;
                }

            }
        }
    }

    //      waitAdjust  堆顶元素,此函数就是为了将其调整到特定位置,满足小顶堆
    //    索引在 minHeapEnd  是表示当前堆的最后一个元素索引
    //
    public void adjustHeap(int []array,int minHeapEnd){
             int currentIndex=0;
             int waitAdjust=array[0];
             while (currentIndex<=minHeapEnd/2-1){
                 int leftChild=array[2*currentIndex+1];

                 // 只有左孩子
                 if(2*currentIndex+2>minHeapEnd){
                     if(leftChild>waitAdjust){
                         array[currentIndex]=leftChild;
                         currentIndex=2*currentIndex+1;// 走向左子树
                     }
                 }
                 // 左右孩子都有: 选取最小孩子交换
                 else{

                     int rChild=array[2*currentIndex+2];
                     int minChildIndex=leftChild<rChild? 2*currentIndex+1:2*currentIndex+2;
                     if(waitAdjust<=array[minChildIndex]){
                         break; // 结束调整
                     }else {
                         array[currentIndex]=array[minChildIndex];
                         currentIndex=minChildIndex;
                     }

                 }

             }
             array[currentIndex]=waitAdjust;
    }
     //将堆顶元素交换到tail  (这里看作是输出)
    public void pop(int[] array,int tail){
        int temp=array[0];
        array[0]=array[tail];
        array[tail]=temp;
    }
    public void heapSort(int array[]){
        if(null==array||0==array.length){
            return;
        }
        init(array);
        for(int i=0;i<array.length;i++){
            pop(array,array.length-1-i);
            // 注意堆调整的范围比之前的少一个元素
            adjustHeap(array,array.length-1-i-1);
        }
    }

    public static void main(String[] args) {
        int [] array= {2,5,3,12,8,17,10,20,19,13};
        RandomUtil.printArray(array);
        new HeapSort().heapSort(array);
        System.out.println("排序后:");
        RandomUtil.printArray(array);

    }
}

输出:
在这里插入图片描述

几个方法说明:

init(): 将输入序列初始化为堆
pop(int[] array,int tail): 输出,将堆顶元素交换到当前堆的 ** 最后一个位置 **
adjustHeap(int []array,int minHeapEnd): 调整堆,堆顶元素是来自堆尾的,可能不满足堆的性质,需要将其调整到
合适的位置
时间复杂度:初始化是o(n) ,调整重建是o(lgn),共需要n次重建 记为o(nlgn)
流程是:
初始化;// o(n)
while(i++<array.length){//o(n)
pop();
adjust();//(o lgn)

总的时间复杂度=o(n)+o(nlgn)=o(nlgn)
空间复杂度:只是使用了有限个简单变量,o(1)

注意:堆初始化和堆调整有些相似,但是是不一样的.
    堆初始化:自底向上调整
    堆调整:自上向下重建堆

堆排序的优化(只是一个思路,未证明):

(小顶堆为例)
堆排序哪里可以优化呢,都这么优秀了?
堆调整可能被优化,将堆尾元素与堆顶交换,而堆尾元素可能是是很大的,那么调整时,就会与很多层去比较,如何减少这个层的比较呢?

堆中从根节点到叶节点的一条路径是有序的

    3
   /  \ 
   4   5
  / \  /\
 7  6  8 10
现在需要将堆顶给移出,交换成如下树  h=3

    10
   /  \ 
   4   5
  / \  /\
 7  6  8 3
// h/2=1  
// 根 10  与4 比较 10>4
// 交换 根成为4
     4
   /  \ 
   10  5
  / \  /\
 7  6  8 3

//   1. 调整子树   10
         /  \
         7   6
 // 2. 根4与5比较,,根较小,不调整

   

可能的运用场景

top(k):时间复杂度  n(lgk)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值