Spark编程指南-快速开始

本教程引导读者快速了解Spark,通过Spark Shell进行交互式分析,介绍数据集操作和缓存功能。从下载Spark开始,演示如何在Shell中创建和操作数据集,强调了数据集在性能上的优势,并展示了如何缓存数据,最后讲解如何构建和运行独立的Spark应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本教程简要介绍了如何使用Spark。我们将首先通过Spark的交互式shell(在Python或Scala中)介绍API,然后展示如何使用Java,Scala和Python编写应用程序。

首先,从Spark网站下载Spark的打包版本 。由于我们不会使用HDFS,您可以下载任何版本的Hadoop的软件包。

请注意,在Spark 2.0之前,Spark的主要编程接口是Resilient Distributed Dataset(RDD)。在Spark 2.0之后,RDD被数据集取代,数据集像RDD一样强类型,但在底层有更丰富的优化。仍然支持RDD接口,您可以在RDD编程指南中获得更详细的参考。但是,我们强烈建议您切换到使用数据集,它具有比RDD更好的性能。请参阅SQL编程指南以获取有关数据集的更多信息。


使用Spark Shell进行交互式分析

基础

在Spark包目录下执行 进入Spark Shell

./bin/spark-shell

从源目录中的 README 文件中的文本创建一个新的 RDD

scala> val textFile = spark.read.textFile("README.md")
textFile: org.apache.spark.sql.Dataset[String] = [value: string]

直接从Dataset获取值,或者转换数据集以获取新值

数据集中item的数量

scala> textFile.count() 
res0: Long = 126

数据集中第一个item

scala> textFile.first
res2: String = # Apache Spark
有关数据集操作的更多信息
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值