
无痛入门复杂系统科学
文章平均质量分 91
复杂系统科学;熵;网络;
认知计算 茂森
大家好!我是个喜欢琢磨“美是怎么炼成的”博士生。简单来说,我的工作就像在给大脑和AI装双摄镜头——左手研究人类看到画作、听到音乐时,大脑里噼里啪啦闪动的火花(这叫神经美学);右手教人工智能学习梵高画星空时的狂野笔触,或者周杰伦写旋律时的小心思。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
沙堆模型揭示的奥秘:系统如何自己走到崩溃边缘
沙堆模型揭示了自组织临界现象,展示了系统如何通过微小事件维持动态平衡,最终走向崩溃边缘。核心公式包括沙粒稳定条件、幂律分布和能量守恒,类比于包裹堆叠、地震规模等现实场景。通过Bak-Tang-Wiesenfeld模型和有限尺寸标度律,进一步推导了系统的动态演化和统计分布。代码实战部分实现了沙堆模型的可视化,展示了沙堆高度分布和雪崩规模的幂律特征。该模型广泛应用于复杂系统的分析,如森林火灾、地震预测等,关键词包括自组织临界、幂律分布、雪崩效应等。原创 2025-05-09 10:39:01 · 669 阅读 · 0 评论 -
复杂性之墙:为何脑科学等领域难觅“爱因斯坦”?
就像理解一片森林远比理解一棵树复杂,脑科学等领域研究的是高度复杂的‘森林’,而非物理学研究的相对简单的‘树木’”原创 2025-03-09 19:13:48 · 1075 阅读 · 0 评论 -
复杂系统自组织:从无序到有序的神奇转变
复杂系统的就像是一群蚂蚁,没有一个总指挥,却能通过彼此之间的互动,自发地构建出复杂且有序的蚁巢。在这个过程中,系统从原本看似杂乱无章(无序)的状态,逐渐形成稳定且有规律(有序)的结构。原创 2025-02-17 15:28:56 · 1265 阅读 · 0 评论 -
重整化群(RG):物理学的 “放大镜”和 “简化术”,带你 “看透”物质世界的 “尺度秘密”
重复上述步骤,不断放大尺度,得到一系列重整化后的参数。,可以找到重整化群变换的固定点。观察,忽略微观细节,抓住宏观本质,就像。一样,从复杂到简洁,揭示物理规律的。是粗粒化后的有效哈密顿量,只依赖于。,使得在更大尺度上,系统仍然可以用。展开指数项,进行求和运算,可以得到。,使得粗粒化后的模型与原始模型在。,相邻自旋之间有相互作用,能量为。:参数在重整化群变换下的演化轨迹。,它帮助我们理解物理系统在不同。以下 Python 代码演示了。,研究物理系统在不同尺度下的。为例,推导重整化群变换函数。原创 2025-02-06 15:44:35 · 1100 阅读 · 0 评论 -
复杂系统与还原论:系统行为能否简化为部分之和?
假设我们正在研究一个蚁群的行为。方法会分别研究单个蚂蚁的行为,然后试图将这些行为加总来预测整个蚁群的行为。而复杂系统的方法则会关注蚂蚁之间的相互作用,以及这些相互作用如何导致蚁群作为一个整体表现出觅食、筑巢等复杂行为。原创 2025-01-20 16:56:40 · 1025 阅读 · 0 评论 -
多层神经网络的涌现性:从复杂系统到特征表示的生动阐释
从复杂系统的角度来看,神经网络中的涌现表现为各层特征在不断的学习和调整过程中,逐渐形成对原始输入的高度抽象和非线性表达。我们用公式、代码以及可视化示例说明了多层感知机的原理和涌现机制,展示了如何通过不同的统计量(如信息熵、互信息等)以及可视化手段(如 SHAP)来理解网络内在的行为与决策过程。原创 2025-01-06 10:11:47 · 1244 阅读 · 0 评论 -
熵与熵产生率:揭示系统无序与能量耗散的核心关系
熵产生率描述了系统从一个状态向另一个状态演化过程中熵的产生速率,反映了过程的不可逆性。σdStotaldtσdtdStotal变量解释σ\sigmaσ:熵产生率,单位时间内系统总熵的变化。StotalStotal:系统总熵,包括系统熵和环境熵。涨落定理描述了在非平衡态下系统的熵产生与其反向过程的概率比。PΣP−ΣeΣP−ΣPΣeΣ变量解释PΣP(\Sigma)PΣ:熵产生量为Σ\SigmaΣ的概率。P−Σ。原创 2025-01-06 10:45:28 · 1340 阅读 · 0 评论 -
【有作图代码】“引入变分分布 (q(z)):用一条替代路径来简化积分计算,让我们更容易探索未知的概率世界!
想象你要去全国各地收集食材((z)),希望最终做出一道美味大餐((f(z)))。于是,你请了一位“替身选手”( q(z) ),让他代表大部分地区去跑腿,然后只需修正替身带回的数据和真实数据之间的差距,就可较精确地推测真正的。当我们无法直接求解 (\int p(z) f(z) , dz) 时,引入一个可控且易于计算的分布 ( q(z) ) 来近似 ( p(z) ),或找其上下界,能让我们在实际应用(如机器学习与贝叶斯推断)中大幅度简化计算。(求 ( \int p(z)f(z)dz ))。原创 2025-01-03 11:59:37 · 649 阅读 · 0 评论 -
Cauchy-Schwarz不等式:向量内积的“上限卫士”,帮你衡量向量有多“同向”
柯西-施瓦茨不等式 Cauchy-Schwarz Inequality#向量内积 Vector Dot Product#向量范数 Vector Norm#向量夹角 Angle Between Vectors#不等式 Upper Bound。原创 2025-01-02 23:26:41 · 1107 阅读 · 0 评论 -
【微软,模型规模】模型参数规模泄露:理解大型语言模型的参数量级
大型语言模型 Large Language Model#参数规模 Parameter Scale#GPT-4o。原创 2025-01-02 19:10:25 · 2274 阅读 · 0 评论 -
大模型理解力探讨:LeCun认为,大模型(LLM)并不真正理解这个世界,尤其是物理世界,它们只是“本能般地吐出一个又一个单词”。而Hinton则持相反观点。
大模型理解力 Large Model Understanding#特征交互 Feature Interaction#视频学习 Video Learning#语言学习 Language Learning。原创 2025-01-02 17:46:05 · 777 阅读 · 0 评论 -
【有作图代码】Layer Normalization:让模型更“平衡”的秘密武器,它像团队中的协调者,确保每层输出稳定,助力模型高效训练
假设我们有一个简单的,其输出为一个向量xx1x2...xn,我们需要对这个输出进行。xμσxyμn1i1∑nxiσn1i1∑nxi−μ2xiσxi−μyiγxiβ其中,γ和β是可学习的参数,用于恢复数据的表达能力。原创 2025-01-01 13:52:57 · 899 阅读 · 0 评论 -
【有作图代码】具身智能、艾伦·图灵与图灵测试:智能的衡量与机器智能的探索
假设我们有一个,它能够通过自然语言与人类进行交互,我们需要判断这个系统是否具备。这时,我们可以利用来进行评估。原创 2025-01-01 11:31:37 · 970 阅读 · 0 评论 -
【有作图代码】科研生态多样性指数:一个“生态系统健康度”的衡量工具,它帮助我们在面对科研机构方向单一化问题时,通过计算科研方向的多样性指数来评估科研生态的健康与稳定性。
假设我们有一个科研机构,其中包含5个不同的研究方向,每个方向的研究人员数量分别为:10, 20, 5, 2, 1。我们计算。H−i1∑npilnpi其中,$ p_i $ 是第i个方向研究人员数量的比例,n是方向的总数。原创 2024-12-30 08:31:09 · 690 阅读 · 0 评论 -
【通俗理解】泛函与变分法:这就像是爬山,不仅要找到山顶,还要找到那条最省力的上山路
泛函 Functional#变分法 Calculus of Variations#极值问题 Extremum Problems#泛函极值 Functional Extremum#欧拉-拉格朗日方程 Euler-Lagrange Equation。原创 2024-12-20 12:04:03 · 703 阅读 · 0 评论 -
【通俗理解】自由能与熵:熵就像是房间里的混乱程度,而自由能则是房间整理到最有序状态所需要的“努力”
当你关上门窗,不让外界干扰(即绝热过程),房间里的物品会自然而然地散乱开来,混乱度(熵)增加,而要达到之前的整洁状态(低自由能)就变得越来越难。这就是系统倾向于熵最大化,同时。这一规律不仅揭示了自然界中能量转换和物质运动的基本方向,也为我们理解和预测系统行为提供了重要的理论依据。通过上述分析,我们可以清晰地看到,在绝热过程中,系统倾向于通过增加。)的直接体现,揭示了自然界中能量转换和物质运动的基本方向。在绝热过程中,系统倾向于熵最大化以实现自由能最小化,这是。【通俗理解】自由能与熵的关系是怎样的?原创 2024-11-05 17:15:31 · 1577 阅读 · 0 评论 -
【有作图代码】信息维数在数据压缩中扮演着“指南针”的角色。它告诉我们数据中哪些部分是不均匀的,哪些部分是冗余的,从而指导我们如何更有效地压缩数据。
这个听起来既神秘又高大上的概念,其实就像是我们在数据世界中的“不均匀性探测器”。它帮助我们中元素分布的不均匀程度,就像是一把精准的尺子,测量着的“崎岖不平”。在信息论与分形几何的交汇点上,成为了连接两者的桥梁,为等领域提供了强大的工具。原创 2024-12-19 11:08:14 · 808 阅读 · 0 评论 -
【通俗理解】变分法就像是一个“微积分的魔术师”,它帮助我们处理那些看似无解的复杂微分方程,通过寻找函数的最优解来逼近真实解。
变分法 Variational Method#Jensen不等式 Jensen’s Inequality#复杂微分方程 Complex Differential Equations#优化问题 Optimization Problems#积分计算 Integral Calculation。原创 2024-12-08 12:31:00 · 997 阅读 · 0 评论 -
【通俗理解】Koopman算符就像是非线性动力系统的“翻译官”,它将复杂的非线性系统转化为无穷维的线性系统,让我们能够用更简单的线性方法来分析非线性问题
Koopman算符KKKgxgFxKgxgFx))其中,gxg(x)gx是系统状态xxx的函数,FxF(x)Fx是非线性动力系统的演化规则。原创 2024-12-07 20:28:45 · 1225 阅读 · 0 评论 -
【实战攻略】如何从零开始快速实现深度学习新想法?——四步走战略
想象一下,你要盖一座新房子(实现新想法),但不知道从哪里开始。#深度学习 #新想法实现 #baseline论文 #pipeline搭建 #核心算法融入 #实践攻略。【实战攻略】如何从零开始快速实现深度学习新想法?原创 2024-12-01 17:30:47 · 1093 阅读 · 0 评论 -
【通俗理解】边际化技巧在概率论中就像是一把“筛子”,它能够帮助我们从复杂的联合概率分布中筛选出我们关心的那个变量的概率分布
边际化技巧 #概率论 #联合概率 #条件概率 #积分计算 #概率分布 #贝叶斯推断。原创 2024-11-23 11:01:02 · 1308 阅读 · 0 评论 -
【通俗理解】隐变量的变分分布就像是一场“捉迷藏”游戏,在这场游戏中,我们试图通过观察到的线索(即观测数据)来推测那些隐藏起来的小伙伴(即隐变量)的位置和状态
隐变量 #变分分布 #概率模型 #公式推导 #期望最大化 #机器学习 #变分贝叶斯 #隐马尔可夫模型。原创 2024-11-22 19:54:15 · 1326 阅读 · 0 评论 -
【通俗理解】ELBO,即证据下界,在机器学习中扮演着“情感纽带”的角色,它连接着模型的真实后验分布与我们通过**变分推断**得到的近似后验分布
ELBO #证据下界 #变分推断 #机器学习 #潜变量模型 #KL散度 #期望 #对数似然。原创 2024-11-22 10:53:05 · 1922 阅读 · 0 评论 -
【通俗解释】大脑通过马尔可夫毯划分状态,并利用自由能功能最小化原则,实现内部状态与外部环境的动态平衡
感觉状态和活动状态就像是这座“调优器”的桥梁,让大脑能与外界环境进行“沟通”。原则,实现内部状态与外部环境的动态平衡,这一过程类似于神经网络的“调优”。#马尔可夫毯 #自由能原理 #大脑状态调整 #自组织过程 #神经网络优化。,为我们理解大脑功能和优化神经网络提供了新的启示。,让内部状态更好地适应和响应外部环境的变化。的划分和自由能功能最小化的原则,实现了。这一过程与神经网络的“调优”过程有着。通过上述分析,我们可以看到,大脑通过。【通俗解释,用上打比方的方式】想象一下,大脑就像是一个复杂的。原创 2024-11-18 17:17:25 · 578 阅读 · 0 评论 -
【通俗理解】自适应偏置力方法类似于给一个物理系统加上一个“智能弹簧”,这个弹簧会根据系统当前的受力情况自动调整,帮助系统更容易地跨越能量势垒,从而在模拟过程中更均匀地采样
自适应偏置力 #ABF #分子动力学模拟 #自由能计算 #平均力 #瞬时力 #反应坐标 #bin划分 #偏置力更新 #自由能导数。:本文详细介绍了自适应偏置力(ABF)方法的基本原理和算法实现,包括瞬时力和平均力的计算、偏置力的更新策略以及自由能的计算方法。:本文提出了Fixman势的概念,用于处理约束模拟中的统计权重问题,对ABF方法中的统计处理提供了理论基础。自适应偏置力(ABF)方法是一种有效的分子动力学模拟技术,通过计算并去除平均力,提高采样效率,从而精确计算。——从平均力计算到自由能导数。原创 2024-11-18 11:06:52 · 1204 阅读 · 0 评论 -
【通俗理解】复杂系统的分形研究揭示了自然界中广泛存在的自相似性和标度不变性
想象一下,你正在观察一片树叶的脉络,或者一座山川的轮廓,它们看似复杂无序,但实际上却隐藏着一种奇妙的规律——分形。原创 2024-11-12 00:45:03 · 794 阅读 · 0 评论 -
【通俗理解】Gibbs自由能就像是一个“能量货币”,它衡量了系统在特定条件下(等温、等压、粒子数不变)能够“花费”多少能量去做非体积功,比如化学反应中的化学键形成或断裂。
Gibbs自由能是热力学中的一个重要概念,它描述了系统在等温、等压、等粒子数条件下做非体积功的能力,是判断系统反应方向的重要依据。当Gibbs自由能降低时,系统就倾向于发生某种变化,就像人们倾向于花费更少的钱去完成某件事情一样。#Gibbs自由能 #热力学势 #配分函数 #物理量计算 #化学势 #反应方向 #热力学第二定律。”,它衡量了系统在特定条件下(等温、等压、粒子数不变)能够“花费”多少能量去。【通俗理解】Gibbs自由能是如何推导并应用的?——从定义到关键公式。原创 2024-11-06 10:34:45 · 1789 阅读 · 0 评论 -
【通俗理解】图神经网络就像是社交网络中的“信息传话筒”,它不断地从邻居节点那里收集信息(消息传递),然后把这些信息汇总起来(聚合),最后根据汇总的信息更新自己的状态(更新)
图神经网络就像是社交网络中的**“信息传话筒”**,它不断地从邻居节点那里收集信息(消息传递),然后把这些信息汇总起来(聚合),最后根据汇总的信息更新自己的状态(更新)。#图神经网络 #消息传递 #聚合 #更新 #节点分类 #链接预测 #图卷积网络 #图注意力网络 #GraphSAGE #时间图网络 #动态图处理。图神经网络通过消息传递、聚合和更新步骤,有效地学习图结构数据中的空间特征,为各种图相关问题提供了强大的解决方案。,从而在各种图相关的任务中表现出色。原创 2024-11-05 15:38:38 · 572 阅读 · 0 评论 -
【通俗理解】柯尔莫哥洛夫复杂度就是寻找最短描述的长度,来衡量对象的复杂性。
柯尔莫哥洛夫复杂度 #算法信息论 #对象复杂性 #最短描述长度 #通用图灵机。原创 2024-10-23 18:44:49 · 1274 阅读 · 0 评论 -
【复杂系统系列(中级)】Kolmogorov复杂度可以被视为一个“信息的拼图游戏”,它衡量的是将一段信息(或数据)拼接成有序状态所需的最少步骤或“拼图块”。
由于Kolmogorov复杂度的不可计算性,我们无法直接编写一个程序来计算任意字符串的Kolmogorov复杂度。Kolmogorov复杂度可以被视为一个“信息的拼图游戏”,它衡量的是将一段信息(或数据)拼接成有序状态所需的最少步骤或“拼图块”。就像玩拼图游戏时,我们需要找到正确的拼图块来还原整幅图画,Kolmogorov复杂度则衡量了将无序信息变成有序状态所需的最少努力。,并且我们使用一种简单的编程语言来描述产生这个字符串的程序。是非常困难的,甚至是不可能的,因为Kolmogorov复杂度的不可计算性。原创 2024-09-12 22:29:55 · 1085 阅读 · 0 评论 -
【复杂系统系列(中级)】凝聚态物理与其他复杂性科学领域的交织探索 ——从神经科学到教育学的跨学科对话
通过上述的分析,我们可以看到凝聚态物理与其他复杂性科学领域之间存在着深刻的联系和启示。这些领域的交织探索,不仅推动了各自领域的发展,也为理解自然和社会现象提供了新的视角和方法。在未来的研究中,我们可以期待更多跨领域的合作和创新,以揭示复杂系统的奥秘。#凝聚态物理 #神经科学 #认知心理学 #脑科学 #教育学 #跨尺度现象 #非线性动力学 #自组织 #复杂网络 #知识传递 #技术创新。作为物理学的一个重要分支,与其他复杂性科学领域(如神经科学、认知心理学、脑科学、教育学)之间存在着深刻的联系和启示。原创 2024-09-08 01:23:59 · 860 阅读 · 0 评论 -
【复杂系统系列(中级)】复杂系统科学的层级与不确定性方程,可以被视为一个“世界的解构与重建机”,它一方面拆解世界的层级,展示每一层的独特性质;另一方面,它又重组这些层级,揭示不确定性在其中的建设性作用
复杂系统科学 #层级结构 #不确定性 #上行因果 #下行因果 #初值敏感 #混沌现象。原创 2024-09-05 23:22:19 · 1602 阅读 · 0 评论 -
【自由能系列(初级)】生命负熵:生命系统通过不断摄取负熵(即有序性)来抵抗外界环境的熵增(即无序性),从而维持自身的稳定和有序。
生命负熵 #熵增原理 #生命秩序 #薛定谔方程 #熵减过程 #热力学第二定律 #信息熵 #生命系统建模 #负熵流 #熵平衡。原创 2024-08-31 12:10:49 · 1742 阅读 · 0 评论 -
【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制【代码模拟】
自动调节 #动态平衡 #生物体稳态 #反馈机制 #体温调节 #微分方程模型。原创 2024-08-30 19:43:57 · 5982 阅读 · 0 评论 -
【自由能系列(高级)】证据下界衡量了生成模型 p(x,z∣θ)和推断网络 q(z∣ϕ)之间的匹配程度。同时优化生成模型和推断网络
证据下界(ELBO)是用于衡量生成模型和推断网络性能的一个重要指标,特别是在变分自编码器(VAE)中。ELBO通过最大化来优化模型,以提升的能力。Lθϕ;xEqlogpxz∣θ)]−Eqlogqz∣ϕ)]其中,x是观测数据,z是隐变量,θ和ϕ分别是生成模型和推断网络的参数。原创 2024-08-30 10:41:53 · 1561 阅读 · 0 评论 -
【自由能系列(中级)】自由能与变分自由能——从状态到配置的效益最大化【代码模拟】
自由能 #变分自由能 #状态函数 #配置函数 #效益最大化 #物理系统 #优化问题。原创 2024-08-29 21:09:37 · 1280 阅读 · 0 评论 -
【自由能系列(中级)】状态与动作的协同机制解析 ——从马尔可夫毯到大脑功能的全方位剖析【mermaid 代码】
内部状态自组织以最小化感官状态的自由能,并与感知相对应;此图展示了系统如何通过马尔可夫毯划分状态,并通过内部状态的自组织来最小化感官状态的自由能,从而实现感知与动作的协同机制。Hopfield的研究揭示了神经网络如何通过自组织展现集体计算能力,对理解大脑内部状态的动态有重要意义。Friston的理论提出了自由能最小化原则,作为大脑功能的基础,对理解感知与动作的协同机制有重要意义。Clark的文章探讨了预测性大脑和情境化代理的概念,为理解大脑如何与外部状态耦合提供了重要视角。内部与隐藏/外部状态。原创 2024-08-29 19:36:27 · 1095 阅读 · 0 评论 -
【深入解析】最优控制中的Bellman方程——从决策到最优路径的探索
Bellman方程 #最优控制 #动态规划 #值函数 #策略优化 #强化学习。原创 2024-08-28 19:46:58 · 1447 阅读 · 0 评论 -
【通俗理解】计算思维解构——问题解决的四阶段模型
计算思维 #解构 #抽象化 #范式识别 #设计算法 #问题分解 #合成方法 #计算机科学 #问题解决技巧。原创 2020-04-02 00:48:24 · 986 阅读 · 1 评论 -
【通俗理解】视网膜编码——高效信息处理的神经机制
视网膜编码 #efficient coding #互信息 #神经活动 #节能原则 #色彩与运动方向编码。原创 2020-03-14 14:21:32 · 419 阅读 · 0 评论