Hadoop面试题

本文详述了Hadoop面试中的重点问题,涵盖了Hadoop的运行模式、生态圈组件、HDFS存储机制、SecondaryNameNode的工作流程、MapReduce的执行过程、YARN的架构和调度器、数据压缩算法以及MapReduce的优化策略。内容深入浅出,适合准备Hadoop相关面试的读者阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Hadoop面试题(一)

1、集群的最主要瓶颈

  磁盘IO

2、Hadoop运行模式

  单机版、伪分布式模式、完全分布式模式

3、Hadoop生态圈的组件并做简要描述

  1)Zookeeper:是一个开源的分布式应用程序协调服务,基于zookeeper可以实现同步服务,配置维护,命名服务。
  2)Flume:一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统。
  3)Hbase:是一个分布式的、面向列的开源数据库, 利用Hadoop HDFS作为其存储系统。
  4)Hive:基于Hadoop的一个数据仓库工具,可以将结构化的数据档映射为一张数据库表,并提供简单的sql 查询功能,可以将sql语句转换为MapReduce任务进行运行。
  5)Sqoop:将一个关系型数据库中的数据导进到Hadoop的 HDFS中,也可以将HDFS的数据导进到关系型数据库中。

4、解释“hadoop”和“hadoop 生态系统”两个概念

  Hadoop是指Hadoop框架本身;hadoop生态系统,不仅包含hadoop,还包括保证hadoop框架正常高效运行其他框架,比如zookeeper、Flume、Hbase、Hive、Sqoop等辅助框架。

5、请列出正常工作的Hadoop集群中Hadoop都分别需要启动哪些进程,它们的作用分别是什么?

  1)NameNode:它是hadoop中的主服务器,管理文件系统名称空间和对集群中存储的文件的访问,保存有metadate。
  2)SecondaryNameNode:它不是namenode的冗余守护进程,而是提供周期检查点和清理任务。帮助NN合并editslog,减少NN启动时间。
  3)DataNode:它负责管理连接到节点的存储(一个集群中可以有多个节点)。每个存储数据的节点运行一个datanode守护进程。
  4)ResourceManager(JobTracker):JobTracker负责调度DataNode上的工作。每个DataNode有一个TaskTracker,它们执行实际工作。
  5)NodeManager:(TaskTracker)执行任务。
  6)DFSZKFailoverController:高可用时它负责监控NN的状态,并及时的把状态信息写入ZK。它通过一个独立线程周期性的调用NN上的一个特定接口来获取NN的健康状态。FC也有选择谁作为Active NN的权利,因为最多只有两个节点,目前选择策略还比较简单(先到先得,轮换)。
  7)JournalNode:高可用情况下存放namenode的editlog文件。

Hadoop面试题总结(二)——HDFS

1、 HDFS 中的 block 默认保存几份?

  默认保存3份

2、HDFS 默认 BlockSize 是多大?

  默认64MB

3、负责HDFS数据存储的是哪一部分?

  DataNode负责数据存储

4、SecondaryNameNode的目的是什么?

  他的目的使帮助NameNode合并编辑日志,减少NameNode 启动时间

5、文件大小设置,增大有什么影响?

  HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M。
思考:为什么块的大小不能设置的太小,也不能设置的太大?
    HDFS的块比磁盘的块大,其目的是为了最小化寻址开销。如果块设置得足够大,从磁盘传输数据的时间会明显大于定位这个块开始位置所需的时间。
因而,传输一个由多个块组成的文件的时间取决于磁盘传输速率
  如果寻址时间约为10ms,而传输速率为100MB/s,为了使寻址时间仅占传输时间的1%,我们要将块大小设置约为100MB。默认的块大小128MB。
  块的大小:10ms×100×100M/s = 100M,如图

  增加文件块大小,需要增加磁盘的传输速率。

6、hadoop的块大小,从哪个版本开始是128M

  Hadoop1.x都是64M,hadoop2.x开始都是128M。

7、HDFS的存储机制(☆☆☆☆☆)

  HDFS存储机制,包括HDFS的写入数据过程读取数据过程两部分
HDFS写数据过程

  1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在。
  2)NameNode返回是否可以上传。
  3)客户端请求第一个 block上传到哪几个datanode服务器上。
  4)NameNode返回3个datanode节点,分别为dn1、dn2、dn3。
  5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成。
  6)dn1、dn2、dn3逐级应答客户端。
  7)客户端开始往dn1上传第一个block(先从磁盘读取数据放到一个本地内存缓存),以packet为单位,dn1收到一个packet就会传给dn2,dn2传给dn3;
dn1每传一个packet会放入一个应答队列等待应答。
  8)当一个block传输完成之后,客户端再次请求NameNode上传第二个block的服务器。(重复执行3-7步)。

HDFS读数据过程

  1)客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址。
  2)挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据。
  3)DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以packet为单位来做校验)。
  4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。

8、secondary namenode工作机制(☆☆☆☆☆)

1)第一阶段:NameNode启动
  (1)第一次启动NameNode格式化后,创建fsimage和edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存。
  (2)客户端对元数据进行增删改的请求。
  (3)NameNode记录操作日志,更新滚动日志。
  (4)NameNode在内存中对数据进行增删改查。
2)第二阶段:Secondary NameNode工作
  (1)Secondary NameNode询问NameNode是否需要checkpoint。直接带回NameNode是否检查结果。
  (2)Secondary NameNode请求执行checkpoint。
  (3)NameNode滚动正在写的edits日志。
  (4)将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode。
  (5)Secondary NameNode加载编辑日志和镜像文件到内存,并合并。
  (6)生成新的镜像文件fsimage.chkpoint。
  (7)拷贝fsimage.chkpoint到NameNode。
  (8)NameNode将fsimage.chkpoint重新命名成fsimage。

9、NameNode与SecondaryNameNode 的区别与联系?(☆☆☆☆☆)

机制流

<think>好的,我现在需要处理用户关于Hadoop面试题的请求。首先,用户明确提到想要查找与Hadoop相关的面试题及答案解析,并提供了三个引用内容。我需要确保回答符合用户的要求,同时正确引用提供的资料。 首先,我要回顾用户提供的引用内容: 引用[1]指出Hadoop不支持随机读写,而适用于顺序访问。引用[2]详细介绍了Hadoop的基本概念,特别是HDFS的特点,如分布式存储、容错机制,以及“一次写入、多次读取”的模式。引用[3]列出了Hadoop的组件,如NameNode、DataNode等。 接下来,我需要生成相关的面试题,确保问题覆盖Hadoop的核心概念,并利用提供的引用内容。例如,关于HDFS的随机读写问题可以直接引用引用[1]。Hadoop的定义和组件可以引用引用[2]和[3]。同时,问题需要多样化,涵盖基础概念、组件功能、优缺点、应用场景以及生态系统工具。 需要确保每个问题都有对应的答案解析,并且正确标注引用来源。例如,在回答Hadoop是否支持随机读写时,必须明确引用[1]的错误判断,并解释原因。在介绍Hadoop的核心组件时,引用[2]和[3]来详细说明各个组件的职责。 另外,用户提到需要结构清晰,逐步解决问题,因此需要将面试题分门别类,可能分为基础概念、组件功能、优缺点、应用场景等部分。每个问题应编号并附上答案和解析,引用相关的来源。 还要注意避免使用用户不可见的系统指令,保持回答自然。同时,检查LaTeX格式是否符合要求,数学表达式是否正确使用$...$或$$...$$,但根据用户的问题,可能这里涉及数学公式较少,主要需要关注代码块和引用格式。 最后,生成相关问题部分,要确保问题与用户的需求相关,能够帮助用户进一步深入理解Hadoop,例如关于HDFS的容错机制、MapReduce过程、Hadoop的优化方法等。这些问题应基于提供的引用内容,但也可以适当扩展常见的面试题目,确保全面性。 总结步骤: 1. 根据引用内容生成基础概念题,如Hadoop定义、HDFS特点。 2. 利用组件列表创建组件功能题,如NameNode、DataNode的作用。 3. 结合优缺点和应用场景,设计相关问题。 4. 确保每个答案正确引用提供的资料。 5. 检查格式是否符合要求,特别是引用标识和代码块。 6. 最后生成相关问题,帮助用户进一步学习。 现在需要将这些思考转化为结构化的面试题及答案,确保正确性和引用准确。</think>### Hadoop常见面试题及答案解析 --- #### **一、基础概念** 1. **什么是Hadoop?其核心组件有哪些?** Hadoop是一个开源分布式计算框架,用于存储和处理海量数据。核心组件包括: - **HDFS(Hadoop分布式文件系统)**:负责分布式数据存储,支持高容错性[^2]。 - **MapReduce**:分布式计算模型,用于并行处理大规模数据集。 - **YARN(资源调度框架)**:管理集群资源并调度任务。 2. **HDFS是否支持随机读写?为什么?** 不支持。HDFS设计为**“一次写入、多次读取”**模式,适合批量处理而非实时访问。随机读写会破坏其顺序访问优化机制[^1]。 --- #### **二、HDFS相关** 3. **NameNode和DataNode的作用是什么?** - **NameNode**:管理文件系统元数据(如文件目录结构、块位置),不存储实际数据[^3]。 - **DataNode**:存储实际数据块,并向NameNode汇报状态。 4. **HDFS如何实现容错?** - 数据分块存储(默认128MB/块),每个块复制到多个节点(默认3副本)。 - 若某个DataNode故障,系统会从其他副本恢复数据。 --- #### **三、MapReduce相关** 5. **MapReduce的工作流程分为哪几个阶段?** - **Map阶段**:输入数据分片,由Mapper生成键值对。 - **Shuffle阶段**:按Key排序并分发到Reducer。 - **Reduce阶段**:聚合键值对,输出最终结果。 6. **Combiner的作用是什么?** Combiner是本地Reduce操作,用于合并Mapper输出的中间结果,减少网络传输量。例如,求和时可以先在Mapper端局部汇总。 --- #### **四、优缺点与应用场景** 7. **Hadoop的优缺点有哪些?** - **优点**:高扩展性、容错性、低成本硬件支持。 - **缺点**:不适合低延迟任务(如实时查询)、小文件处理效率低。 8. **Hadoop适合哪些应用场景?** - 日志分析、离线数据处理(如ETL)、大规模数据存储(如历史档案)[^2]。 --- #### **五、进阶问题** 9. **Secondary NameNode的作用是什么?** 定期合并NameNode的编辑日志(EditLog)和镜像文件(FsImage),防止EditLog过大。注意:**它不是NameNode的备份**,仅辅助恢复[^3]。 10. **如何优化Hadoop小文件问题?** - 合并小文件为SequenceFile或HAR文件。 - 使用HBase替代HDFS存储小文件。 --- ### §§扩展问题§§ 1. HDFS的副本放置策略是什么? 2. YARN中ResourceManager和NodeManager的职责有何区别? 3. Hadoop 2.x与Hadoop 3.x的主要区别有哪些? 4. 如何理解MapReduce的“数据本地化”优化? 5. Hadoop生态系统中Hive和HBase的适用场景有何不同? --- **引用来源** [^1]: Hadoop仅支持顺序读写,不支持随机访问。 : Hadoop核心架构与HDFS设计原理。 : Hadoop组件(NameNode、DataNode等)的功能说明。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值