最近刷leetcode时遇见了好几道动态规划,因此对如何解动态规划这类题目也稍有心得。
什么是动态规划?
可能大家都知道官方的具体解释,巴拉巴拉一堆解释。而在我看来,动态规划就是一种对于问题的拆分。将一个问题拆分成一个一个子问题,总问题的解决办法就依靠着这些子问题的解决而解决。好比你爬上10层楼,你需要先解决1楼到2楼,2楼到3楼。。。。。。最后9楼到10楼。
状态转移方程怎么来的?
问题描述:
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
对于此类典型的背包问题,我们可以将此问题进行细分:
1.首先将物品细分,问题就可以变为这样:
有编号分别为a的五件物品,它们的重量分别是2它们的价值分别是6现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
有编号分别为a,b的五件物品,它们的重量分别是2,2它们的价值分别是6,3现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
。。。。。。
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
2.对于重量我们也可以进行细分。
最后细分成的问题就是:有编号分别为1,2,..,i的i件物品,它们的重量分别是W1,W2..,Wi它们的价值分别是V1,V2,,,Vi现在给你个承重为j的背包,如何让背包里装入的物品具有最大的价值总和,总价和使用dp[i][j]表示?
问题细分到这里,大家也就知道那个常见的所谓状态转移方程是如何来的了。
dp[i][j] = Max(背上i包后的最大价值,不背i包的最大价值)
不背i包的最大价值 = dp[i-1][j],相信大家都能理解。
背上i包的价值=dp[i-1][j-Wi]+Vi。解释一下:假设此时背包的容量j=5,i包的重量为Wi=2,那么你需要知道背包容量j’=5-2时,不背i包时的最大价值也就是dp[i-1][j-Wi],然后在这种情况下背上i包,此时最大价值也就是dp[i-1][j-Wi]+Vi,也就是背上i包的最大价值。
所以状态转移方程就是dp[i][j] =Max(dp[i-1][j-Wi]+Vi, dp[i-1][j]),当然需要j>=Wi,如果j小于Wi,说明i包超过了背包最大容量了,因此此时最大价值dp[i][j] = dp[i-1][j])。
背包问题解法
搞清楚了状态转移方程如何来的,我们就可以解决问题了。
有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最大的价值总和?
伪码如下:
int[][] dp = new int[包数量+1][总容量加1];
for(int i=0;i<=包数量;i++)
dp[i][0] = 0;
for(int j=0;j<=总容量加;j++)
dp[0][j] = 0;
for(int i=1;i<=包数量;i++){
for(int j=i;j<=总容量加;j++){
if(j>=Wi)
dp[i][j] =Max(dp[i-1][j-Wi]+Vi, dp[i-1][j]);
else
dp[i][j] = dp[i-1][j];
}
return dp[5][10];
}
因此背包最大价值 :dp[5][10]=15