Python + PyEcharts 数据可视化处理 柱状图、饼图、线性图 常用Demo

Python + PyEcharts 数据可视化处理

python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观、清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3

柱状图

基本柱状图
from pyecharts import Bar
# 基本柱状图
bar = Bar("基本柱状图", "副标题")
bar.use_theme('dark')  # 暗黑色主题
bar.add('真实成本',   # label
        ["1月", "2月", "3月", "4月", "5月", "6月"],    # 横坐标
        [5, 20, 36, 10, 75, 90],        # 纵坐标
        is_more_utils=True)    # 设置最右侧工具栏

# bar.show_config()       # 调试输出pyecharts的js的配置信息
bar.render('bar_demo.html')  # 生成html文件

img

堆叠柱状图

# 堆叠柱状图
x_attr = ["1月", "2月", "3月", "4月", "5月", "6月"]
data1 = [5, 20, 36, 10, 75, 90]
data2 = [10, 25, 8, 60, 20, 80]
bar1 = Bar('柱状信息堆叠图')
bar1.add('商家1', x_attr, data1, is_stack=True)   # is_stack=True 表示堆叠在一起
bar1.add('商家2', x_attr, data2, is_stack=True)
bar1.render('bar1_demo.html')

img

并列柱形图
# 并列柱形图
bar2 = Bar('并列柱形图', '标记线和标记示例')
bar2.add('商家1', x_attr, data1, mark_point=['average'])  # 标记点:商家1的平均值
bar2.add('商家2', x_attr, data2, mark_line=['min', 'max'])  # 标记线:商家2的最小/大值
bar2.render('bar2_demo.html')

img

横向并列柱形图
# 横向并列柱形图
bar3 = Bar('横向并列柱形图', 'X轴与Y轴交换')
bar3.add('商家1', x_attr, data1)
bar3.add
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值