- 博客(7)
- 收藏
- 关注
原创 PyTorch官方教程之6:迁移学习
《PyTorch官方教程中文版》,PyTorch之迁移学习通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet,然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。下面是利用PyTorch进行迁移学习步骤,要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。from __future__ import print_function, divisionimport torchimport torch.nn as nnimport torch.optim as op
2022-03-16 16:34:27
2932
1
原创 torch.max使用示例
torch.max(input, dim)取每行(dim=1)或每列(dim=0)的最大值,加_,则返回一行中最大数的位置。示例:import torch# 构造一个5x3随机初始化的矩阵x = torch.rand(5, 3)print('input: ', x)print('-'*10)y1 = torch.max(x, 1)print('max by row: ', y1)print('-'*10)y2 = torch.max(x, 0)print('max by col:
2022-03-15 14:34:07
551
原创 PyTorch官方教程之5:numpy vs PyTorch
# 《PyTorch官方教程中文版》, PyTorch之小试牛刀# PyTorch的核心之一:张量,类似于numpy,但可以在GPU上运行# 在介绍PyTorch之前,本章节将首先使用numpy实现网络# 代码解读参考: https://www.cnblogs.com/beer/p/8120487.htmlimport numpy as npimport torch# N是批大小; D_in是输入维度; H是隐藏的维度; D_out是输出维度。N, D_in, H, D_out = 64
2022-03-14 11:57:16
2757
原创 PyTorch官方教程之4:PyTorch之数据加载和处理
# 《PyTorch官方教程中文版》, PyTorch之数据加载和处理from __future__ import print_function, divisionimport osimport torchimport pandas as pd # 用于更容易地进行csv解析from skimage import io, transform # 用于图像的IO和变换import numpy as npimport matplotlib.pyplot as pltfrom torch.ut
2022-03-14 09:19:16
1800
原创 PyTorch官方教程之3:PyTorch图像分类器
# 《PyTorch官方教程中文版》, PyTorch图像分类器import torchimport torchvisionimport torchvision.transforms as transformsimport matplotlib.pyplot as pltimport numpy as npimport torch.nn as nnimport torch.nn.functional as Fimport torch.optim as optim# # read cifa
2022-03-11 18:03:49
1973
1
原创 PyTorch官方教程之2:PyTorch神经网络
# 《PyTorch官方教程中文版》, PyTorch神经网络import torchimport torch.nn as nnimport torch.nn.functional as Ffrom torchviz import make_dotfrom torchsummary import summaryimport hiddenlayer as himport torch.optim as optim# 1.定义神经网络(即模型),通常需要继承自nn.Module然后实现自己的l
2022-03-11 18:02:09
871
原创 PyTorch官方教程之1:学习tensor
# 《PyTorch官方教程中文版》, 学习tensorimport torch# Part 1: tensor的创建# 创建一个全1张量,设置 requires_grad=True 来跟踪与它相关的计算# 创建一个Tensor时,使用requires_grad参数指定是否记录对其的操作,以便之后利用backward()方法进行梯度求解。x1 = torch.ones(2, 2, requires_grad=True)print('x1: ', x1)# 构造一个5x3矩阵,不初始化。全
2022-03-11 18:00:38
1405
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人