Elasticsearch-搜索推荐:Suggest

搜索推荐:Suggest

概述

搜索一般都会要求具有“搜索推荐”或者叫“搜索补全”的功能,即在用户输入搜索的过程中,进行自动补全或者纠错。以此来提高搜索文档的匹配精准度,进而提升用户的搜索体验,这就是Suggest。

四种Suggester
  • term suggester:term suggester正如其名,只基于tokenizer之后的单个term去匹配建议词,并不会考虑多个term之间的关系

    POST <index>/_search
    {
          
      "suggest": {
         
        "<suggest_name>": {
         
          "text": "<search_content>",
          "term": {
         
            "suggest_mode": "<suggest_mode>",
            "field": "<field_name>"
          }
        }
      }
    }
    
    Options:
    • text:用户搜索的文本
    • field:要从哪个字段选取推荐数据
    • analyzer:使用哪种分词器
    • size:每个建议返回的最大结果数
    • sort:如何按照提示词项排序,参数值只可以是以下两个枚举:
      • score:分数>词频>词项本身
      • frequency:词频>分数>词项本身
    • suggest_mode:搜索推荐的推荐模式,参数值亦是枚举:
      • missing:默认值,仅为不在索引中的词项生成建议词
      • popular:仅返回与搜索词文档词频或文档词频更高的建议词
      • always:根据 建议文本中的词项 推荐 任何匹配的建议词
    • max_edits:可以具有最大偏移距离候选建议以便被认为是建议。只能是1到2之间的值。任何其他值都将导致引发错误的请求错误。默认为2
    • prefix_length:前缀匹配的时候,必须满足的最少字符
    • min_word_length:最少包含的单词数量
    • min_doc_freq:最少的文档频率
    • max_term_freq:最大的词频
POST /news/_search
{
   
  "suggest": {
   
    "my-suggestion": {
   
      "text": "baoqing baoqiang",
      "term": {
   
        "suggest_mode":"missing",
        "field": "title",
        "min_doc_freq": 3
      }
    }
  }
}

baoqing 不存在所以会给你推荐类似的 baoqiang存在可以精准匹配到则不会推荐 options 推荐的结果
min_doc_freq是对结果中options freq做过滤 freq是指出现在索引文档中的概率查询结果

{
   
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
   
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
   
    "total" : {
   
      "value" : 0,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "suggest" 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值