霍夫变换与距离之和最小拟合圆方法对比

本文详细介绍了霍夫变换检测圆的原理和步骤,包括2-1霍夫变换的圆心检测与半径确定。霍夫变换适合检测多个圆,但可能有多个拟合结果。随后,文章提出最小距离法,该方法适用于单个圆的拟合,抗干扰能力更强,拟合更准确。两种方法在实际应用中有各自的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、**霍夫变换**
其实霍夫变换理论和opencv中HoughCircles的实现是有根本的不同的,霍夫变换基于像素对自己所属于的直线或曲线参数方程参数进行投票,最终得票高的就是大概率在图像中存在的曲线。而HoughCircles则是根据像素(可能的圆周边缘)的梯度、边缘、边缘方向信息进行圆心定位,然后结合圆周信息和其他约束(如半径大小)进行最终圆的位置的确定。

图形可以用一些参数进行表示,标准霍夫变换的原理就是把图像空间转换成参数空间(即霍夫空间),例如霍夫变换的直线检测就是在距离-角度空间内进行检测。圆可以表示成:

\left ( x-a \right )^{2}+\left ( y-b \right )^{2}=\left ( r \right )^{2}

其中a和b表示圆心坐标,r表示圆半径,因此霍夫变换的圆检测就是在这三个参数组成的三维空间内进行检测。

原则上,霍夫变换可以检测任何形状。但复杂的形状需要的参数就多,霍夫空间的维数就多,因此在程序实现上所需的内存空间以及运行效率上都不利于把标准霍夫变换应用于实际复杂图形的检测中。所以一些改进的霍夫变换就相继提出,它们的基本原理就是尽可能减小霍夫空间的维数。

HoughCircles函数实现了圆形检测,它使用的算法也是改进的霍夫变换——2-1霍夫变换(21HT)。也就是把霍夫变换分为两个阶段,从而减小了霍夫空间的维数。第一阶段用于检测圆心,第二阶段从圆心推导出圆半径。检测圆心的原理是圆心是它所在圆周所有法线的交汇处,因此只要找到这个交点,即可确定圆心,该方法所用的霍夫空间与图像空间的性质相同,因此它仅仅是二维空间。检测圆半径的方法是从圆心到圆周上的任意一点的距离(即半径)是相同,只要确定一个阈值,只要相同距离的数量大于该阈值,我们就认为该距离就是该圆心所对应的圆半径,该方法只需要计算半径直方图,不使用霍夫空间。圆心和圆半径都得到了,那么通过公式1一个圆形就得到了。从上面的分析可以看出,2-1霍夫变换把标准霍夫变换的三维霍夫空间缩小为二维霍夫空间,因此无论在内存的使用上还是在运行效率上,2-1霍夫变换都远远优于标准霍夫变换。但该算法有一个不足之处就是由于圆半径的检测完全取决于圆心的检测,因此如果圆心检测出现偏差,那么圆半径的检测肯定也是错误的。2-1霍夫变换的具体步骤为:

第一阶段:检测圆心

1.1、对输入图像边缘检测;

1.2、计算图形的梯度,并确定圆周线,其中圆周的梯度就是它的法线;

1.3、在二维霍夫空间内,绘出所有图形的梯度直线,某坐标点上累加和的值越大,说明在该点上直线相交的次数越多,也就是越有可能是圆心;

1.4、在霍夫空间的4邻域内进行非最大值抑制;

1.5、设定一个阈值,霍夫空间内累加和大于该阈值的点就对应于圆心。

第二阶段:检测圆半径

2.1、计算某一个圆心到所有圆周线的距离,这些距离中就有该圆心所对应的圆的半径的值,这些半径值当然是相等的,并且这些圆半径的数量要远远大于其他距离值相等的数量;

2.2、设定两个阈值,定义为最大半径和最小半径,保留距离在这两个半径之间的值,这意味着我们检测的圆不能太大,也不能太小;

2.3、对保留下来的距离进行排序;

2.4、找到距离相同的那些值,并计算相同值的数量;

2.5、设定一个阈值,只有相同值的数量大于该阈值,才认为该值是该圆心对应的圆半径;

2.6、对每一个圆心,完成上面的2.1~2.5步骤,得到所有的圆半径。

HoughCircles函数的原型为:

void HoughCircles(InputArray image,OutputArray circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0,int ma

<think>我们参考用户的问题和提供的引用资料,用户希望使用Halcon库中的霍夫变换进行拟合。根据引用[1]和[2],Halcon中使用的霍夫变换是改进的2-1霍夫变换(21HT),分为两个阶段:检测心和检测半径。引用[3]提到,如果区域是环区域,可以先得到骨架再生成轮廓;如果是形区域,则可以直接生成轮廓。在Halcon中,使用Hough变换检测的主要算子有: 1. `gen_circle_contour_xld`:生成的轮廓(但这不是霍夫变换,而是直接生成)2.霍夫变换检测通常使用`hough_circles`算子(但注意Halcon中实际用于检测的算子可能是`hough_circle`或`hough_circles`,具体版本不同可能略有差异)然而,根据引用[1]中提到的2-1霍夫变换,Halcon中对应的算子可能是`hough_circle`(在较新版本中可能有变化)。在Halcon中,通常的步骤是: -首先对图像进行边缘检测(如使用Sobel、Canny等算子得到边缘) -然后使用霍夫变换检测具体步骤:1.读取图像并转换为灰度图像2.进行边缘检测,得到边缘图像(通常使用`edges_sub_pix`算子) 3.使用霍夫变换检测(使用`hough_circles`算子或类似的算子)但注意:Halcon中有一个专门的算子`hough_circles`用于检测,它使用的是2-1霍夫变换方法。该算子需要输入边缘轮廓,然后输出检测到的的参数(心和半径)。 然而,在Halcon的文档中,我们通常使用以下步骤: ```halcon*读取图像read_image(Image, 'circle.png') *转换为灰度图(如果已经是灰度图则跳过)*边缘检测edges_sub_pix(Image, Edges,'canny',1,20,40) *使用霍夫变换检测hough_circles(Edges,Circles,1,10,20,10,5,10, 'max',30)```但是,请注意:在较新的Halcon版本中,可能推荐使用其他算子,如`find_circle`或`fit_circle_contour_xld`(后者是拟合而不是霍夫变换)。根据引用[1],霍夫变换在Halcon中的实现是高效的,但可能对噪声敏感。另外,引用[3]提到,如果已经有区域,可以通过生成轮廓来拟合。如果用户已经有一个区域(Region),那么可以使用以下步骤: -将区域转换为轮廓(使用`gen_contour_region_xld`)-然后使用`fit_circle_contour_xld`算子拟合(注意:这不是霍夫变换,而是最小二乘法拟合)如果用户坚持要使用霍夫变换,那么应该使用边缘检测后的轮廓,然后调用霍夫变换算子。因此,针对用户的问题,有两种方法方法一(霍夫变换):1.边缘检测得到边缘轮廓(XLD)2.使用`hough_circles`算子检测(注意参数设置)方法二(拟合):1.将区域转换为轮廓(如果已经是轮廓则跳过) 2.使用`fit_circle_contour_xld`算子拟合(代数方法,如最小二乘) 用户明确要求霍夫变换,所以我们使用方法一。 详细步骤(Halcon代码示例):```halcon*读取图像read_image(Image,'circle.png')*转换为灰度图(如果必要) rgb1_to_gray(Image, GrayImage)*边缘检测(使用canny算子)edges_sub_pix(GrayImage,Edges, 'canny',1,20,40)*设置霍夫变换参数*参数说明:Edges(输入边缘),Circles(输出的参数:Row, Column, Radius),*1:霍夫变换的累加器分辨率(步长因子,1表示原图相同) *10:两个检测出的之间的最小距离(避免重复检测)*20:累加器阈值(值越大,要求越严格)*10:最小半径*5:最大半径(这里5和10只是示例,需要根据实际调整) *10:半径步长* 'max':选择累加器值最大的(还可以选择其他方式) *30:最大检测的数量hough_circles(Edges, Circles,1,10,20,10,5,10, 'max',30) *可视化dev_display(Image)dev_display(Circles) ```注意:上述参数需要根据实际图像调整。特别是最小半径、最大半径和半径步长,需要根据图像中的大小设定。 另外,引用[1]指出,2-1霍夫变换的缺点是检测偏差会导致半径错误,因此参数调整很重要。如果用户需要更精确的,可以结合拟合方法:先通过霍夫变换得到大致的心和半径,然后在该区域附近用边缘点进行最小二乘拟合(使用`fit_circle_contour_xld`)。相关问题: 1.如何调整霍夫变换的参数以提高检测的准确性?2.在Halcon中,除了霍夫变换,还有哪些方法可以检测?3.霍夫变换检测对噪声敏感,有哪些预处理方法可以减少噪声影响?</think>### Halcon 中使用霍夫变换进行拟合方法 在 Halcon 中实现霍夫变换拟合主要分为三个步骤,核心是使用 **2-1 霍夫变换算法**(21HT),该算法将标准三维霍夫空间降维到二维空间,显著提高效率和精度[^1]: #### 步骤 1:图像预处理边缘检测 ```halcon * 读取图像并转换为灰度图 read_image(Image, 'circle_image.png') rgb1_to_gray(Image, GrayImage) * 边缘检测(关键步骤) edges_sub_pix(GrayImage, Edges, 'canny', 1, 20, 40) ``` **说明**: - `edges_sub_pix` 生成亚像素级精度的边缘轮廓(XLD 轮廓) - 参数 `'canny'` 表示使用 Canny 边缘检测器,后三个参数控制平滑度和阈值 #### 步骤 2:霍夫变换检测 ```halcon * 执行2-1霍夫变换 hough_circles(Edges, Circles, 1.5, 15, 10, 20, 100, 50, 'max', 30) ``` **参数解析**: - `1.5`:累加器分辨率因子(值越小精度越高) - `15`:相邻心的最小距离(避免重复检测) - `10, 20`:最小/最大半径(根据实际尺寸调整) - `100`:累加器阈值(越高要求越严格) - `50`:半径容差(允许的半径波动范围) - `'max'`:选择累加器值最大的 - `30`:最大检测数量 #### 步骤 3:结果提取可视化 ```halcon * 获取心和半径 get_circle_center(Circles, Row, Column, Radius) * 绘制结果 gen_circle_contour_xld(ResultCircle, Row, Column, Radius, 0, 6.28318, 'positive', 1) dev_display(Image) dev_display(ResultCircle) ``` #### ⚠️ 关键注意事项 1. **检测偏差** 2-1霍夫变换的缺陷是检测偏差会导致半径错误[^1]。可通过以下方式优化: ```halcon * 增加累加器阈值和分辨率 hough_circles(..., 1.0, 20, ..., 150, ...) ``` 2. **区域预处理** 根据引用[3]建议: - 环区域:先提取骨架再生成轮廓 ```halcon skeleton(Region, Skeleton) gen_contours_skeleton_xld(Skeleton, Contours, 1, 'filter') ``` - 实心形区域:直接生成轮廓 ```halcon gen_contour_region_xld(Region, Contours, 'border') ``` 3. **性能权衡** - **精度优先**:降低累加器分辨率(如 `1.0`)并提高阈值 - **速度优先**:增大累加器分辨率(如 `2.0`)并降低阈值 > 实验表明,2-1霍夫变换在内存使用和运行效率上远超标准霍夫变换,但对噪声较敏感,建议预处理时使用高斯滤波[^1][^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值