八大排序:
堆排序基本介绍:
- 堆排序是利用对这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平局时间复杂度均为O(nlogn),它也是不稳定排序。
- 堆是具有以下性质的完全二叉树,每个节点的值都大于
或等于其左右孩子节点的值,称为大顶堆,注意:没有要求节点的左孩子的值和右孩子的值的大小关系。 - 每个节点的值都小于或等于其左右孩子节点的值,称为小顶堆
- 一般升序用大顶堆,降序用小顶堆
堆排序的基本思想:
堆排序的基本思想是:
- 将待排序序列构造成一个大顶堆
- 此时,整个序列的最大值就是堆顶的根节点
- 将其与末尾元素进行交换,此时末尾就是最大值。
- 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便可以得到一个有序序列了。
可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了
堆排序的初始代码:
package DataStructures.tree;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class HeapSort {
public static void main(String[] args) {
int[] arr = {4, 6, 8, 5, 9,-1,90,100,-50};//要求将数组进行升序排列
heapSort(arr);
}
//编写一个堆排序的方法
public static void heapSort(int[] arr) {
int temp = 0;
System.out.println("堆排序");
/* //分步完成
adjustHeap(arr,1, arr.length);
System.out.println("第一次:"+ Arrays.toString(arr));
adjustHeap(arr,0, arr.length);
System.out.println("第二次:"+ Arrays.toString(arr));*/
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
for (int j = arr.length - 1; j > 0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr,0, j);
}
System.out.println("数组=" + Arrays.toString(arr));
}
/*
*arr 待调整的数组
* i 表示非叶子结点在数组中的索引
* length 表示对多少个元素进行调整,length是在逐渐减少
*/
//将一个数组(二叉树),调整成一个大顶堆
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
/*
* 1.k = i * 2 + 1是i节点的左子节点
* */
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
if (k + 1 < length && arr[k] < arr[k + 1]) {
//说明左子节点的值小于右子节点的值
k++;//k指向右子节点
}
if (arr[k] > temp) {
//如果子节点大于父节点
arr[i] = arr[k];//把较大的值赋给当前的这个节点让后让i指向k
i = k;//继续循环比较
} else {
break;
}
}
//当for循环结束后,我们将以i为父节点的树的最大值,放在了最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
}
}
测试堆排序的时间消耗:
package DataStructures.tree;
import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;
public class HeapSort {
public static void main(String[] args) {
//int[] arr = {4, 6, 8, 5, 9,-1,90,100,-50};//要求将数组进行升序排列
int[] arr = new int[8000000];
for (int i = 0; i < 8000000; i++) {
arr[i] = (int) (Math.random() * 8000000);//生成80000个随机数【0,80000000】
}
Date data1 = new Date();
SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String data1Str = simpleDateFormat.format(data1);
System.out.println("排序前的时间:" + data1Str);
//bubbleSort(arr);
heapSort(arr);
Date data2 = new Date();
//new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
String data2Str = simpleDateFormat.format(data2);
System.out.println("排序后的时间:" + data2Str);
}
//编写一个堆排序的方法
public static void heapSort(int[] arr) {
int temp = 0;
System.out.println("堆排序");
/* //分步完成
adjustHeap(arr,1, arr.length);
System.out.println("第一次:"+ Arrays.toString(arr));
adjustHeap(arr,0, arr.length);
System.out.println("第二次:"+ Arrays.toString(arr));*/
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
for (int j = arr.length - 1; j > 0; j--) {
//交换
temp = arr[j];
arr[j] = arr[0];
arr[0] = temp;
adjustHeap(arr,0, j);
}
//System.out.println("数组=" + Arrays.toString(arr));
}
/*
*arr 待调整的数组
* i 表示非叶子结点在数组中的索引
* length 表示对多少个元素进行调整,length是在逐渐减少
*/
//将一个数组(二叉树),调整成一个大顶堆
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i];//先取出当前元素的值,保存在临时变量
//开始调整
//说明
/*
* 1.k = i * 2 + 1是i节点的左子节点
* */
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
if (k + 1 < length && arr[k] < arr[k + 1]) {
//说明左子节点的值小于右子节点的值
k++;//k指向右子节点
}
if (arr[k] > temp) {
//如果子节点大于父节点
arr[i] = arr[k];//把较大的值赋给当前的这个节点让后让i指向k
i = k;//继续循环比较
} else {
break;
}
}
//当for循环结束后,我们将以i为父节点的树的最大值,放在了最顶(局部)
arr[i] = temp;//将temp值放到调整后的位置
}
}