
小样本
文章平均质量分 81
F_aF_a
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
小样本方式加载Stanford_Cars数据集
文章目录准备数据根据标签划分数据集准备数据需要从数据集地址:https://ai.stanford.edu/~jkrause/cars/car_dataset.html下载3个压缩包,下载好之后解压根据标签划分数据集原创 2022-04-21 14:48:10 · 1766 阅读 · 2 评论 -
《Few-Shot Learning by Integrating Spatial and Frequency Representation》代码
论文:原来提取特征都是在空域上用CNN提取特征,本文模型额外使用了离散余弦变换提取频域信息再放入另一个CNN提取特征,两部分的特征放一起 送入分类器论文源码:https://github.com/xiangyu8/PT-MAP-sf文章目录数据数据集准备运行`train_dct.py`修改参数日志准备数据加载methodbackbone训练开始加载val_loader数据数据集准备已CUB数据集为例,如果原来机器上有这个数据集就可以直接在项目根目录下新建Dataset/CUB文件夹,然后将数据集复原创 2022-03-19 13:37:14 · 2240 阅读 · 10 评论 -
<Squeezing Backbone Feature Distributions to the Max for Efficient Few-Shot Learning>
在本文中,我们提出了一种新的基于传输的方法,旨在处理特征向量,使其更接近高斯分布,从而提高了精度。对于在训练期间可以使用未标记测试样本的转导小样本学习,我们还引入了一种优化传输启发算法,以进一步提高所达到的性能。使用标准化的视觉基准,我们展示了所提出的方法能够通过各种数据集、主干架构和少镜头设置实现最先进的精度。文章目录Feature extractionFeature preprocessingBoosted Min-size SinkhornFeature extraction第一步是仅使用基础原创 2022-03-02 11:41:57 · 927 阅读 · 0 评论 -
《Few-Shot Classification with Feature Map Reconstruction Networks》论文笔记&代码
文章目录流程代码流程在Nway−KshotN way - K shotNway−Kshot的episodeepisodeepisode下(图中N=K=3,有3个类,每类有3张图片),XsX_sXs表示支持图片的集合.当有单张查询图片xqx_qxq的时候,我们希望能预测它的标签yqy_qyq.灰色的梯形代表卷积特征提取器,xqx_qxq经过它产生的一个大小为r×dr×dr×d大小的特征图输出(记作QQQ),其中r=h×wr = h×wr=h×w代表空间大小,ddd是通道数.对于CCC个类别,原创 2021-11-19 21:04:44 · 3690 阅读 · 14 评论 -
代码笔记《Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images》
文章目录0. 准备0. 准备数据集将code/loader/belga2flickr.py line4如果报错可以修改环境,参考自如何解决:module ‘scipy.misc’ has no attribute ‘imread’原创 2021-10-29 13:14:38 · 615 阅读 · 0 评论 -
ctm代码笔记《Finding Task-Relevant Features for Few-Shot Learning by Category Traversal》
源码地址:https://github.com/Clarifai/few-shot-ctm文章目录无法直接运行代码训练流程学习策略计算模型loss其他无法直接运行代码看代码有人也有这个问题Why i can’t run the code with default setting,所以要稍微修改下代码。修改tools/general_utils.pyline276为yaml_cfg = AttrDict(yaml.load(f, Loader=yaml.FullLoader))main代码原创 2021-10-25 11:14:18 · 799 阅读 · 4 评论 -
回顾原型网络代码②计算模型的精度和损失
文章目录定义`def load_protonet_conv(**kwargs)`使用计算loss定义few_shot.py中定义了函数模型。文件中有两个类和一个函数:def load_protonet_conv(**kwargs):根据传进来的参数kwargs,建立模型class Protonet(nn.Module):主要是计算episode的loss和accclass Flatten(nn.Module):展平。但是torch不是有这个层吗,不明白为啥作者还要自己写呢def load_p原创 2021-10-20 21:49:41 · 1897 阅读 · 0 评论 -
回顾原型网络代码①episode数据加载
一般pytorch加载数据的固定格式是:dataset = MyDataset() # 第一步:构造Dataset对象dataloader = DataLoader(dataset)# 第二步:通过DataLoader来构造迭代对象num_epoches = 100for epoch in range(num_epoches):# 第三步:逐步迭代数据 for img, label in dataloader: # 训练代码但是小样本有episode这原创 2021-10-20 19:44:46 · 2965 阅读 · 4 评论 -
<Transductive Propagation Network for Few-shot Learning>官方代码笔记
文章目录数据模型①`CNNEncoder``RelationNetwork``Prototypical``LabelPropagation`数据模型①CNNEncoder提取特征RelationNetworkPrototypicalLabelPropagation原创 2021-09-11 15:56:09 · 587 阅读 · 6 评论 -
LaplacianShot官方代码笔记
文章目录训练模式项目目录评估模式`main()`主要逻辑中文注释代码训练模式在run.sh中复制命令行python ./src/train_lshot.py -c $config --proto-rect $protrec --lmd $lmd --tune-lmd $tune --data $datapath --lshot --log-file /LaplacianShot.log --evaluate用值替换$变量,去掉最前的python ./src/train_lshot.py和最后的-原创 2021-09-01 21:02:40 · 291 阅读 · 0 评论 -
<Laplacian Regularized Few-Shot Learning>笔记
文章目录思想数学公式特征提取器fθf_{\theta}fθ实现细节Proposed Algorithm for LaplacianShot思想we minimize a quadratic binary-assignment function containing two terms:(1) a unary term assigning query samples to the nearest class prototype, and(2) a pairwise Laplacian term e原创 2021-08-29 21:30:02 · 706 阅读 · 3 评论 -
Sil-Net代码
文章目录数据超参数main函数训练损失函数模型`extract``decode``classify``classify2``init_params`测试数据data_loader = get_loader(args.dataset)data_path = get_data_path(args.dataset) # '../db/'tr_loader = data_loader(data_path, args.exp,is_transform=True, split='train', img_siz原创 2021-08-27 22:04:47 · 541 阅读 · 1 评论 -
Sill-Net: Feature Augmentation with Separated Illumination Representation
文章目录流程网络效果总结流程网络效果总结属于用数据增强的方式解决小样本问题,取得了很好的效果原创 2021-08-24 10:06:44 · 547 阅读 · 0 评论 -
《Few-Shot Learning with Graph Neural Networks》代码理解
代码使用omniglotomniglotomniglot数据集,以5way−1shot5way-1shot5way−1shot为例,一个episodeepisodeepisode只有一张queryqueryquery,一个batchbatchbatch中有300300300个episodeepisodeepisode文章目录数据训练metric_nnWcomputeGconvgmul流程图在main.py中的第144行开始训练的迭代数据首先加载数据# main.py line149data =原创 2021-08-12 21:51:58 · 1893 阅读 · 9 评论 -
《Few-Shot Learning with Graph Neural Networks》
文章目录流程初始化图顶点边图卷积流程初始化图顶点顶点由图的特征和one−hotone-hotone−hot编码构成边两个顶点的边由其顶点的差经过多层感知机MLP得来图卷积原创 2021-08-12 20:32:04 · 243 阅读 · 2 评论 -
Relation Network 官方代码解析
文章目录数据集网络运行代码划分数据集模型开始训练提取特征拼接特征获得`relation cslore`计算损失优化模型在`test`数据上评估模型保存模型总结数据集官方代码使用的Omniglot,但是Omniglot是105×105105 ×105105×105大小的,官方给的omniglot_28x28.zip解压出来图片是resize过的,大小为28∗2828*2828∗28。网络论文中的Relation Network包括两个部分embedding module和relation modul原创 2021-08-02 10:28:09 · 5034 阅读 · 31 评论 -
KAN: KNOWLEDGE-AUGMENTED NETWORKS FOR FEW-SHOT LEARNING
文章目录论文方法流程实验效果代码自己的理解https://ieeexplore.ieee.org/document/9413612论文方法对支持集和查询集的图片用fϕ(⋅)f_\phi(·)fϕ(⋅)编码,每张图片对应的输出为W×H×CW × H × CW×H×C,论文中设置通道数C=512C=512C=512.在训练阶段,通过图卷积网络gψ(⋅)g_\psi(·)gψ(⋅)对图G进行编码,将知识图中每个节点表示为512维度的向量。gψ(G)kg_\psi(\mathcal{G})_kgψ原创 2021-07-27 19:56:23 · 702 阅读 · 0 评论 -
小样本 原型网络官方代码理解
记录一下调通的第一个小样本模型????官方代码https://github.com/jakesnell/prototypical-networks官方论文https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.pdf@inproceedings{snell2017prototypical,title={Prototypical Networks for Few-shot原创 2021-07-17 20:45:42 · 2911 阅读 · 20 评论 -
NeurIPS-2019-adaptive-cross-modal-few-shot-learning
自适应跨模态小样本学习文章目录摘要1.Introduction2. Related Work3. Method3.1 Preliminaries3.1.1 Episodic Training3.1.2 Prototypical Networks3.2 Adaptive Modality Mixture Mechanism4. Experiments4.1 Experimental Setup4.2 Results4.3 Adaptiveness Analysis5 ConclusionReference原创 2021-06-07 20:23:59 · 773 阅读 · 0 评论 -
Learning to Compare: Relation Network for Few-Shot Learning
文章目录1. Introduction1. Introduction深度学习模型已经在视觉识别任务上取得了巨大进展。然而,这些监督学习模型需要不仅大量标注好的数据,并且还要迭代很多次来训练大量参数。由于标注的花费,严重影响了他们在新类上的可拓展性,更从根本上限制了它们对新出现(eg:新的类别)或者稀有(eg:稀有动物)的类别,这些类别可能根本不存在许多带注释的图像。相比之下,人类非常擅长识别带有少量标注的物体,或根本没有,即:小样本或者零样本。例如,孩子们可以从书中的一幅图画中归纳出“斑马”的概念,或者原创 2021-06-05 16:47:19 · 1974 阅读 · 3 评论 -
Prototypical Networks for Few-shot Learning
小样本学习的原型网络文章目录泛读摘要标题主要思想结论精读小样本的定义C-way K-shot零样本定义最近的两种方法聚类符号模型实验模型结构实验结论总结泛读摘要对于小样本分类问题,我们提出了一种原型网络,在该网络中,分类器必须归纳到训练集中未看到的新类别,而每个新类别仅给出少量示例。原型网络学习一个度量空间,在该度量空间中,可以通过计算到每个类的原型表示的距离来执行分类。与最近的小样本学习方法相比,它们反映了一种更简单的归纳偏差,在这种有限的数据条件下是有益的,并且取得了优异的成绩。我们提供的原创 2021-05-28 18:53:02 · 1077 阅读 · 0 评论