数值计算笔记之条件数

这篇笔记探讨了数值计算中条件数的概念,它是衡量方程组对输入变化敏感性的指标。文章通过实例解释了如何判断方程组是否为"病态",即当右端项微小扰动时解的变化是否显著。条件数的定义与不同类型的范数相关,例如最大特征值与最小特征值的比值。此外,误差分析部分介绍了如何利用矩阵范数评估解的精度,以及在实际操作中如何进行误差分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0、范数

点击链接

一、方程组的性态

例:  AX=b \rightarrow \begin{bmatrix} 1 &0.99 \\ 0.99 & 0.98 \end{bmatrix} \begin{bmatrix} x_{1}\\ x_{2} \end{bmatrix} = \begin{bmatrix} 1.99\\ 1.97 \end{bmatrix}

有准确解:x = (1,1)^{T}

现考虑右端项的微小扰动,  b^{'}=(1.989903,1.970106)^{T}

则此时为方程组的解为: x^{'}=(3,-1.0203)^{T}  ,那么就称此类方程组是”病态“的。

条件数定义:称 ||A^{-1}||\cdot ||A|| 为 A 的条件数,记作:cond(A) = ||A^{-1}||\cdot ||A||

可以看到,其条件数的定义是用范数来定义的,而范数有很多的类型,所以可以使用下标来表示。

例:cond_{\lambda }(A)=\sqrt{\frac{\lambda _{1}}{\lambda _{n}}}    ,其中 \lambda _{1} 为A^{T}A 的最大特征值,\lambda _{n} 为A^{T}A 的最小特征值

特别的,当 A=A^{T} 时,cond_{\lambda }(A) = \frac{|\lambda _{1}^{'}|}{|\lambda _{n}^{'}|} ,其中  \lambda _{1}^{'} 为A^{T}A 的最大特征值,\lambda _{n}^{'} 为A^{T}A​​​​​​​ 的最小特征值

 

定理:如果 cond(A)>>1,则方程组 AX=b 为”病态“的

例:A=\begin{bmatrix} 1 &0.99 \\ 0.99 & 0.98 \end{bmatrix}    (求解 |\lambda I-A|=0)

求得 cond_{\lambda }(A) = \frac{1.98005}{0.00005}=39600>>1

\therefore AX=b 的性态不好,或者说 是 ”病态“的。 

二、误差分析

设有矩阵方程 AX=b 。其准确解为 x^{*},某一近似解为x,用 ||x-x^{*}|| 来判断误差。

又由于 x^{*} 未知,故常用 ||Ax-b|| 来做误差分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值