chapter02 基于统计的方法
1.概述
统计方法对数据正常性数据作出假设。假设正常数据由统计模型产生,不遵守该模型的是异常数据。统计方法的有效性高度依赖于 给定的数据所做的统计模型假设是否成立。
思想:学习一个拟合给定数据的 生成模型 ,识别该模型低概率区间的对象,将他们作为异常点。
根据如何指定和学习模型,基于统计的异常检测方法可以划分为 参数方法 和非参数方法。
参数方法:假定正常数据由符合参数的分布产生,该参数分布的概率密度函数f(x,θ)给出对象x被该分布产生的概率。值越小,越可能是异常点。
非参数方法:不假定先验统计模型,试图从输入数据确定模型。非参数方法通常假定参数的个数和性质都是灵活的,不做预先的假设。
2.参数方法
2.1 基于正态分布的一元异常点检测
# 一元数据:仅涉及一个属性或变量的数据。
正态分布方法假设数据由正态分布产生,可以根据输入数据学习正态分布的参数,得到概率密度函数,把低概率的点识别为异常点。
求出参数后,根据概率密度分布函数计算数据点服从该分布的概率。正态分布的概率密度函数为:
设定阈值,如果计算的概率低于阈值,则认定发生了异常。
在3sigma法则中,假定正常数据在(μ-3σ,μ+3σ)区间,如果点的范围超过了这个区间,认为是异常点。
这个方法可以用于可视化,箱线图对数据分布做了简单的统计可视化,利用数据的上下四分位数Q1和Q3、中点等形成。异常点被定义为小于 Q1-1.5IQR或者大于Q3+1.5IQR的那些数据。
IQR=Q3-Q1
高斯分布的概率密度函数随参数变化如下:
数据预处理:在这里假设数据符合高斯分布,假设数据不符合高斯分布要对数据进行预处理,如下假设数据符合长尾分布,则对数据进行log变换变为正态分布。
2.2 多元异常点检测
# 多元数据:涉及两个或多个属性或变量的数据。
分解为一元数据异常检测:
在假设各个特征相互独立情况下,概率密度函数为每一维度的累乘形式。
当多个特征相关时,符合多源高斯分布时如下:
使用混合参数分布,许多情况下假定数据由正态分布产生,当实际数据复杂时,这种假定过于简单,可以假定数据是被混合参数分布产生的。
3.非参数方法
例子:使用直方图检测异常点。
直方图是一种频繁使用的非参数统计模型,可以用来检测异常点。该过程包括如下两步:
步骤1:构造直方图。使用输入数据(训练数据)构造一个直方图。该直方图可以是一元的,或者多元的(如果输入数据是多维的)。
尽管非参数方法并不假定任何先验统计模型,但是通常确实要求用户提供参数,以便由数据学习。例如,用户必须指定直方图的类型(等宽的或等深的)和其他参数(直方图中的箱数或每个箱的大小等)。与参数方法不同,这些参数并不指定数据分布的类型。
检测异常点。步骤2:为了确定一个对象是否是异常点,可以对照直方图检查它。在最简单的方法中,如果该对象落入直方图的一个箱中,则该对象被看作正常的,否则被认为是异常点。
对于更复杂的方法,可以使用直方图赋予每个对象一个异常点得分。例如令对象的异常点得分为该对象落入的箱的容积的倒数。
使用直方图作为异常点检测的非参数模型的一个缺点是,很难选择一个合适的箱尺寸。一方面,如果箱尺寸太小,则许多正常对象都会落入空的或稀疏的箱中,因而被误识别为异常点。另一方面,如果箱尺寸太大,则异常点对象可能渗入某些频繁的箱中,因而“假扮”成正常的。
4.基于角度的方法
基于角度的方法的主要思想是:数据边界上的数据很可能将整个数据包围在一个较小的角度内,而内部的数据点则可能以不同的角度围绕着他们。如下图所示,其中点A是一个异常点,点B位于数据内部。
如果数据点与其余点离得较远,则潜在角度可能越小。因此,具有较小角度谱的数据点是异常值,而具有较大角度谱的数据点不是异常值。
考虑三个点X,Y,Z。如果对于任意不同的点Y,Z,有:
其中|| ||代表L2范数 , <⋅>代表点积。
这是一个加权余弦,因为分母包含L2-范数,其通过距离的逆加权进一步减小了异常点的加权角,这也对角谱产生了影响。然后,通过改变数据点Y和Z,保持X的值不变计算所有角度的方法。相应地,数据点X的基于角度的异常分数(ABOF)∈ D为:
5.HBOS
HBOS全名为:Histogram-based Outlier Score。它是一种单变量方法的组合,不能对特征之间的依赖关系进行建模,但是计算速度较快,对大数据集友好。其基本假设是数据集的每个维度相互独立。然后对每个维度进行区间(bin)划分,区间的密度越高,异常评分越低。
HBOS算法流程:
1.为每个数据维度做出数据直方图。对分类数据统计每个值的频数并计算相对频率。对数值数据根据分布的不同采用以下两种方法:
静态宽度直方图:标准的直方图构建方法,在值范围内使用k个等宽箱。样本落入每个桶的频率(相对数量)作为密度(箱子高度)的估计。时间复杂度:O(n)
2.动态宽度直方图:首先对所有值进行排序,然后固定数量的Nk个连续值装进一个箱里,其中N是总实例数,k是箱个数;直方图中的箱面积表示实例数。因为箱的宽度是由箱中第一个值和最后一个值决定的,所有箱的面积都一样,因此每一个箱的高度都是可计算的。这意味着跨度大的箱的高度低,即密度小,只有一种情况例外,超过k个数相等,此时允许在同一个箱里超过Nk值。
时间复杂度:O(n×log(n))
2.对每个维度都计算了一个独立的直方图,其中每个箱子的高度表示密度的估计。然后为了使得最大高度为1(确保了每个特征与异常值得分的权重相等),对直方图进行归一化处理。最后,每一个实例的HBOS值由以下公式计算:
Demo
# 导入相关依赖模块
from pyod.utils.data import evaluate_print,generate_data
from pyod.models.hbos import HBOS
from pyod.utils.example import visualize
# pyod中用于生成toy数据的方法主要是:
# 1、pyod.utils.data.generate_data()
# 2、pyod.utils.data.generate_data_clusters()
# 于是....生成toy example:
contamination = 0.05 # percentage of outliers
n_train = 1000 # number of training points
n_test = 500 # number of testing points
X_train, y_train, X_test, y_test = generate_data(n_train=n_train, n_test=n_test, contamination=contamination)
# 初始化HBOS模型
clf_name = 'HBOS'
clf = HBOS()
clf.fit(X_train)
# get the prediction labels and outlier scores of the training data
y_train_pred = clf.labels_ # binary labels (0: inliers, 1: outliers)
y_train_scores = clf.decision_scores_ # raw outlier scores
# get the prediction on the test data
y_test_pred = clf.predict(X_test) # outlier labels (0 or 1)
y_test_scores = clf.decision_function(X_test) # outlier scores
# evaluate and print the results
print("\nOn Training Data:")
evaluate_print(clf_name, y_train, y_train_scores)
print("\nOn Test Data:")
evaluate_print(clf_name, y_test, y_test_scores)
# 可视化展示训练集、测试集异常检测结果
visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
y_test_pred, show_figure=False, save_figure=True)
5、总结
1.异常检测的统计学方法由数据学习模型,以区别正常的数据对象和异常点。使用统计学方法的一个优点是,异常检测可以是统计上无可非议的。当然,仅当对数据所做的统计假定满足实际约束时才为真。
2.HBOS在全局异常检测问题上表现良好,但不能检测局部异常值。但是HBOS比标准算法快得多,尤其是在大数据集上。