学习笔记1:压缩传感与低秩矩阵理论

本文探讨了压缩传感的基本概念,包括稀疏性、采样定理和压缩传感理论,阐述了如何利用信号的稀疏性降低采样率。接着,介绍了低秩矩阵理论,将其与压缩传感联系起来,并指出矩阵秩最小化问题及其优化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做的研究生课题接触到了低秩矩阵恢复的理论与方法,在学习过程中有很多基础知识的欠缺,希望通过写博客的过程记录一些学习笔记。注:本博客中的理论主要参考自文献[^1] ,非原创内容。

1.压缩传感

1.1稀疏性

对于以向量x0 ∈Rn 表示的信号,其稀疏性即指向量x0中非零元素的个数。数学表示即l0范数(零范数),||x0||:=|{i:xi ≠ 0}|。

1.2采样定理

经典的Nyquist-Shannon采样定理表明,如果要求无失真的重构出原始信号,至少要以信号最高带宽两倍频率的速率对信号进行采样,即FS > 2Fmax

1.3压缩传感

压缩传感理论是利用采样信号的稀疏性以降低采样率,但要保证能够根据观测到的数据准确重构出原始信号。
以上述信号x0为例,我们希望通过测量较少的观测量y∈Rm (m<<n),并能从中重构出原始信号x0,这便是压缩感知的含义。数学模型可表示为
minx∣∣x∣∣0s.t.y=Ax\begin{matrix}min \\x \end{matrix} ||x||_0 \\ s.t.\quad y = Axminxx0s.t</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值