最近在做的研究生课题接触到了低秩矩阵恢复的理论与方法,在学习过程中有很多基础知识的欠缺,希望通过写博客的过程记录一些学习笔记。注:本博客中的理论主要参考自文献[^1] ,非原创内容。
1.压缩传感
1.1稀疏性
对于以向量x0 ∈Rn 表示的信号,其稀疏性即指向量x0中非零元素的个数。数学表示即l0范数(零范数),||x0||:=|{i:xi ≠ 0}|。
1.2采样定理
经典的Nyquist-Shannon采样定理表明,如果要求无失真的重构出原始信号,至少要以信号最高带宽两倍频率的速率对信号进行采样,即FS > 2Fmax 。
1.3压缩传感
压缩传感理论是利用采样信号的稀疏性以降低采样率,但要保证能够根据观测到的数据准确重构出原始信号。
以上述信号x0为例,我们希望通过测量较少的观测量y∈Rm (m<<n),并能从中重构出原始信号x0,这便是压缩感知的含义。数学模型可表示为
minx∣∣x∣∣0s.t.y=Ax\begin{matrix}min \\x \end{matrix} ||x||_0 \\ s.t.\quad y = Axminx∣∣x∣∣0s.t</