Keras(四)——Model类模型(函数式API)

Model类(函数式API)

Keras函数式API是定义复杂模型(如多输出模型、有向无环图,或具有共享层模型的方法)

全连接网络
  • 网络层的实例是可调用的,它以张量为参数,并返回一个张量
  • 输入和输出均为张量,他们都可以用来定义一个模型(Model)
  • 这样的模型和 Keras 的模型相同,都可以被训练
from keras.layers import Input, Dense
from keras.models import Model

# 返回一个张量
inputs = Input(shape=(784,))

# 层的实例是可调用的,它以张量为参数,并且返回一个张量
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 创建一个包含输入层和三个全连接层的模型
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
              loss='categorical_crossentropy',
              metrics=['accuracy'])
model.fit(data, labels)  # 开始训练

利用函数式 API ,可以重用训练好的模型:可将任何模型看作是一个层,然后通过传递一个张量来调用它。且在调用模型时,不仅重用了模型的结构,还重用了它的权重。

函数式 API 的另一个用途是使用共享网络层的模型。

多输入多输出

若只有一个输入:

a = Input(shape=(280, 256))

lstm = LSTM(32)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值