(一零一):ClipCap: CLIP Prefix for Image Captioning

本文介绍了一种轻量级的图像标题生成方法,名为ClipCap,利用CLIP模型的视觉特征作为标题的前缀,通过映射网络和微调的GPT-2语言模型生成有意义的图像标题。这种方法只需快速训练,不需要额外注释,适用于大规模和多样化数据集,且在概念标题和nocaps数据集上取得了与最先进的方法相当的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 出处:CoRR abs/2111.09734 (2021)
  • 代码:https://github. com/rmokady/CLIP_prefix_caption.
  • 题目:ClipCap:用于图像标题的剪辑前缀
  • 主要内容:想法不错,用到Clip、映射网络mlp和GPT。轻量级标题模型

Abstract

图像标题是视觉语言理解中的一项基本任务,该模型预测给定输入图像的文本信息标题。在本文中,我们提出了一个简单的方法来解决这个问题。
我们使用CLIP编码作为标题的前缀,通过使用一个简单的映射网络,然后微调一个语言模型来生成图像标题。最近提出的CLIP模型包含丰富的语义特征,经过文本上下文的训练,使其最适合视觉语言感知
我们的关键思想是,与预先训练的语言模型(GPT2)一起,我们获得了对视觉和文本数据的广泛理解。因此,我们的方法只需要相当快速的训练,以产生一个合格的字幕模型。无需额外的注释或预先训练,它可以有效地为大规模和多样化的数据集生成有意义的标题。
令人惊讶的是,我们的方法即使只训练了映射网络也能很好地工作,而CLIP和语言模型都保持冻结状态,允许一个更轻的架构和更少的可训练参数。通过定量评估,我们证明我们的模型在具有挑战性的概念标题和nocaps数据集上取得了与最先进的方法相当的结果,同时它更简单、更快和更轻。我们的代码可在 https://github.com/rmokady/CLIP_prefix_caption.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Laura_Wangzx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值