【论文笔记】知识图谱用于推荐系统
论文地址
前言和符号
知识图谱在推荐系统的应用,主要有三个方向,基于嵌入,基于连接和基于传播的。
本文符号
本文一些基础定义
方法概述
基于嵌入(embedding-based)
主要有两个模块,一个是学习图谱中实体和关系的表示,另一个是推荐模块。如何组织两个模块就分成了三个小类方法。
two-stageg learning
表示将两个模块一个个分开训练表示。通过使用嵌入方式来得到实体和关系的表示,在输入到推荐模块。
介绍了几种方法,分别是DKN(发掘新闻之间的关系,联合Kim CNN 方法和TransD来表示新闻
v
j
v_j
vj,用户
u
i
u_i
ui聚合了历史点击新闻,利用注意力机制。最后通过多层感知机预测得分),KSR(介绍了时序推荐,利用GRU模块得到用户的偏好,在通过KV-MV模块得到用户属性级别偏好,利用BPR模块与预训练item embedding,之后再利用KV-MN模块学习实体e的embedding,利用TransE学习关系embedding),KTGAN(基于GAN网络)
joint learning
联合训练介绍了CKE(objective函数分为五部分,分别为推荐部分,属性级别特征,文本特征,可视特征还有一项正则),CFKA(利用TransE作为encoder,之后通过hinge loss学习实体和关系的embedding)等方法,
multi-task learing
主要介绍不同任务直接的结合,两个模块独立,通过一个cross & compress单元来分享知识,介绍了一个KTUP。实现图谱补全和推荐任务。补全采用TransH,两个模块的objective fuction
connection-based method
利用挖掘实体之间的关系,有两个主要的方法。
meta-structure
利用不同元路径中实体的连接相似性作为图正则化来约束用户和项的表示。
几种相似性
1.meta-path
2.meta-graph
path-embedding
to encode the connection pattern between user-item pair or item-item pair into vectors,
propagation-based method
利用高阶信息,常用GNN。
分为提取用户信息,提取用户和产品信息
三种方法对比
future work
- 动态推荐
动态图注意力网络被提出,值得关注。 - 多任务学习
图谱信息往往是有缺失的,基于图谱的推荐系统可以自然的视为图的链接预测,所以联合训练图补全和推荐模块有利于推荐 - 跨域推荐
由于各个平台的交互数据不平衡,所以可以利用迁移学习等方法。 - 知识增强表达
利用外部数据增强语言表达模型,从而使知识表示和文本表示能够相互细化。